Abstract

This paper presents an optimization-driven controller design for smooth and accurate position control of a single-rod electrohydrostatic actuator. The design approach uses logically guided iterative runs of the electrohydrostatic actuator to determine the optimal gain and poles' locations of a low-bandwidth controller. The optimization algorithm used in the paper is the globalized bounded Nelder–Mead algorithm with deterministic restarts for improved globalization and lower numerical cost. The design also incorporates a prefilter to ensure minimum jerk in the system's step input response in the beginning and while approaching steady-state. The step response of the filter is a seventh-deg polynomial curve that ensures the minimum change in acceleration in both states. Experimental results reveal that the addition of the proposed prefilter reduces jerk in the system by up to 90%. Results also indicate that the controller performs very well in all quadrants with external load uncertainty of up to 367 kg and thus proves the effectiveness of the design approach.

References

1.
Wang
,
L.
, and
Book
,
W. J.
, “
Using Leakage to Stabilize a Hydraulic Circuit for Pump Controlled Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
6
), p.
061007
.10.1115/1.4024900
2.
Niksefat
,
N.
,
Sepehri
,
N.
, and
Wu
,
Q.
,
2007
, “
Design and Experimental Evaluation of a QFT Contact Task Controller for Electro-Hydraulic Actuators
,”
Int. J. Robust Nonlinear Control
,
17
(
2–3
), pp.
225
250
.10.1002/rnc.1108
3.
Wang
,
L.
,
Book
,
W. J.
, and
Huggins
,
J. D.
,
2012
, “
A Hydraulic Circuit for Single Rod Cylinders
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
1
), p.
011019
.10.1115/1.4004777
4.
Jensen
,
S. C.
,
Jenney
,
G. D.
, and
Dawson
,
D.
,
2000
, “
Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft
,”
19th Digital Avionics Systems Conference
, Philadelphia, PA, Oct. 7–13, pp.
2E3/1
2E3/10
.10.1109/DASC.2000.886914
5.
Costa
,
G. K.
, and
Sepehri
,
N.
,
2015
,
Hydrostatic Transmissions and Actuators: Operation, Modelling and Applications
,
Wiley
,
Hoboken, NJ
.
6.
Choi
,
J.
,
2013
, “
Robust Position Control of Electro-Hydrostatic Actuator Systems With Radial Basis Function Neural Networks
,”
J. Adv. Mech. Des., Syst., Manuf.
,
7
(
2
), pp.
257
267
.10.1299/jamdsm.7.257
7.
T. B
,
M.
,
2011
, “
Preliminary Investigation on Battery Sizing Investigation for Thrust Vector Control on Ares I and Ares V Launch Vehicles
,” NASA Glenn Res. Center, Cleveland, OH, Technical Report No. NASA/TM-2011-216899.
8.
Kaminaga
,
H.
,
Ono
,
J.
,
Nakashima
,
Y.
, and., and
Nakamura
,
Y.
, May
2009
, “
Development of Backdrivable Hydraulic Joint Mechanism for Knee Joint of Humanoid Robots
,”
IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
1577
1582
.10.1109/ROBOT.2009.5152866
9.
Quan
,
Z.
,
Quan
,
L.
, and., and
Zhang
,
J.
, July
2014
, “
Review of Energy Efficient Direct Pump Controlled Cylinder Electro-Hydraulic Technology
,”
Renewable Sustainable Energy Rev.
,
35
, pp.
336
346
.10.1016/j.rser.2014.04.036
10.
Williamson
,
C.
, and
Ivantysynova
,
M.
,
2008
, “
Pump Mode Prediction for Four-Quadrant Velocity Control of Valueless Hydraulic Actuators
,”
Proceeding of JFPS International Symposium on Fluid Power
, Toyama, Japan, Sept. 15–18, pp.
323
328
.
11.
Çalışkan
,
H.
,
Balkan
,
T.
, and
Platin
,
B. E.
,
2015
, “
A Complete Analysis and a Novel Solution for Instability in Pump Controlled Asymmetric Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
9
), p.
091008
.10.1115/1.4030544
12.
Costa
,
G. K.
, and
Sepehri
,
N.
,
2019
, “
Four-Quadrant Analysis and System Design for Single-Rod Hydrostatic Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
2
), p.
021011
.10.1115/1.4041382
13.
Zhang
,
J.
, and
Chen
,
S.
,
2014
, “
Modelling and Study of Active Vibration Control for Off-Road Vehicle
,”
Veh. Syst. Dyn.
,
52
(
5
), pp.
581
607
.10.1080/00423114.2013.848988
14.
Daher
,
N.
, and
Ivantysynova
,
M.
,
2013
, “
System Synthesis and Controller Design of a Novel Pump Controlled Steer-by-Wire System Employing Modern Control Techniques
,”
ASME
Paper No. FPMC2013-4410.10.1115/FPMC2013-4410
15.
Daher
,
N.
, and., and
Ivantysynova
,
M.
,
2015
, “
Yaw Stability Control of Articulated Frame Off-Highway Vehicles Via Displacement Controlled Steer-by-Wire
,”
Control Eng. Pract.
,
45
, pp.
46
53
.10.1016/j.conengprac.2015.08.011
16.
Ahn
,
K. K.
,
Nam
,
D. N. C.
, and., and
Jin
,
M.
, June
2014
, “
Adaptive Backstepping Control of an Electrohydraulic Actuator
,”
IEEE/ASME Trans. Mechatronics
,
19
(
3
), pp.
987
995
.10.1109/TMECH.2013.2265312
17.
Ren
,
G.
,
Esfandiari
,
M.
,
Song
,
J.
, and
Sepehri
,
N.
,
2016
, “
Position Control of an Electrohydrostatic Actuator With Tolerance to Internal Leakage
,”
IEEE Trans. Control Syst. Technol.
,
24
(
6
), pp.
2224
2232
.10.1109/TCST.2016.2517568
18.
Ren
,
G.
,
Song
,
J.
, and
Sepehri
,
N.
,
2017
, “
Fault-Tolerant Actuating Pressure Controller Design for an Electro-Hydrostatic Actuator Experiencing a Leaky Piston Seal
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
6
), p.
061004
.10.1115/1.4035348
19.
Butt
,
K.
,
Rahman
,
R. A.
,
Sepehri
,
N.
, and., and
Filizadeh
,
S.
,
2017
, “
Globalized and Bounded Nelder‐Mead Algorithm With Deterministic Restarts for Tuning Controller Parameters: Method and Application
,”
Optimal Control Appl. Methods
,
38
(
6
), pp.
1042
1055
.10.1002/oca.2311
20.
Butt
,
K.
, and., and
Sepehri
,
N.
,
2018
, “
Model‐Free Online Tuning of Controller Parameters Using a Globalized Local Search Algorithm
,”
Optimal Control Appl. Methods
,
39
(
5
), pp.
1750
1765
.10.1002/oca.2439
You do not currently have access to this content.