Abstract

This paper presents a novel impedance controller modified with a switching strategy for the purpose of improving safety in human–robot interactions. Under normal operating conditions, an impedance controller is enabled when adequate tracking performance is maintained in the presence of bounded disturbances. However, if disturbances are greater than anticipated such that tracking performance is degraded, the proposed controller temporarily switches modes to a control strategy better apt to limit control inputs. With disturbances returning to the prescribed bounds, tracking performance will be restored and the impedance controller will resume for nominal operation. The control parameters are constrained by a few conditions necessary for smooth operation. First, a pair of equality constraints is required for the control signal to be continuous when switching control modes. Second, a Lyapunov analysis is performed to formulate an equality constraint on the control parameters to ensure only a single switch occurs when changing control modes to avert control chatter. Third, a matrix inequality constraint is necessary to ensure a robust positive invariant set is formed for when impedance control is active. Numerical simulations are provided to illustrate the controller and conditions. The simulation results successfully validate the presented theory, demonstrating how the constraints yield a continuous control signal, eliminate switching chatter, and permit robustness to disturbances.

References

1.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part I—Theory
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
1
7
.10.1115/1.3140702
2.
Asada
,
H.
, and
Slotine
,
J.-J. E.
,
1986
,
Robot Analysis and Control
,
Wiley
, New York.
3.
Ibarra
,
J. C. P.
, and
Siqueira
,
A. A. G.
,
2014
, “
Impedance Control of Rehabilitation Robots for Lower Limbs, Review
,”
Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol
,
IEEE
,
Sao Carlos, Sao Paulo, Brazil, Oct.
18–23, pp.
235
240
.10.1109/SBR.LARS.Robocontrol.2014.53
4.
Raiola
,
G.
,
Cardenas
,
C. A.
,
Tadele
,
T. S.
,
de Vries
,
T.
, and
Stramigioli
,
S.
,
2018
, “
Development of a Safety- and Energy-Aware Impedance Controller for Collaborative Robots
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
1237
1244
.10.1109/LRA.2018.2795639
5.
Mohammadi
,
H.
, and
Richter
,
H.
,
2015
, “
Robust Tracking/Impedance Control: Application to Prosthetics
,”
American Control Conference
, IEEE, Chicago, IL, July 1–3, pp.
2673
2678
.10.1109/ACC.2015.7171138
6.
Edwards
,
C.
, and
Spurgeon
,
S.
,
1998
,
Sliding Mode Control: Theory and Applications
,
CRC Press
, London, UK.
7.
Kurfess
,
T. R.
,
2005
,
Robotics and Automation Handbook
,
CRC Press
, Boca Raton, FL.
8.
Zheng
,
E.-H.
,
Xiong
,
J.-J.
, and
Luo
,
J.-L.
,
2014
, “
Second Order Sliding Mode Control for a Quadrotor UAV
,”
ISA Trans.
,
53
(
4
), pp.
1350
1356
.10.1016/j.isatra.2014.03.010
9.
Altintas
,
Y.
,
Erkorkmaz
,
K.
, and
Zhu
,
W.-H.
,
2000
, “
Sliding Mode Controller Design for High Speed Feed Drives
,”
CIRP Ann.
,
49
(
1
), pp.
265
270
.10.1016/S0007-8506(07)62943-6
10.
Madani
,
T.
,
Daachi
,
B.
, and
Djouani
,
K.
,
2016
, “
Non-Singular Terminal Sliding Mode Controller: Application to an Actuated Exoskeleton
,”
Mechatronics
,
33
, pp.
136
145
.10.1016/j.mechatronics.2015.10.012
11.
Utkin
,
V.
,
Guldner
,
J.
, and
Shijun
,
M.
,
1999
,
Sliding Mode Control in Electromechanical Systems
,
CRC Press
, London, UK.
12.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1998
, “
Chattering Avoidance by Second-Order Sliding Mode Control
,”
IEEE Trans. Autom. Control
,
43
(
2
), pp.
241
246
.10.1109/9.661074
13.
Hung
,
J. Y.
,
Gao
,
W.
, and
Hung
,
J. C.
,
1993
, “
Variable Structure Control: A Survey
,”
IEEE Trans. Ind. Electron.
,
40
(
1
), pp.
2
22
.10.1109/41.184817
14.
Piltan
,
F.
, and
Sulaiman
,
N. B.
,
2012
, “
Review of Sliding Mode Control of Robotic Manipulator
,”
World Appl. Sci. J.
,
18
(
12
), pp.
1855
1869
.10.5829/idosi.wasj.2012.18.12.208
15.
Kachroo
,
P.
, and
Tomizuka
,
M.
,
1996
, “
Chattering Reduction and Error Convergence in the Sliding-Mode Control of a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
1063
1068
.10.1109/9.508917
16.
García-Valdovinos
,
L.-G.
,
Parra-Vega
,
V.
, and
Arteaga
,
M. A.
,
2007
, “
Observer-Based Sliding Mode Impedance Control of Bilateral Teleoperation Under Constant Unknown Time Delay
,”
Rob. Auton. Syst.
,
55
(
8
), pp.
609
617
.10.1016/j.robot.2007.05.011
17.
Cho
,
H. C.
,
Park
,
J. H.
,
Kyunghwan
,
K.
, and
Park
,
J.-O.
,
2001
, “
Sliding-Mode-Based Impedance Controller for Bilateral Teleoperation Under Varying Time-Delay
,”
International Conference on Robotics & Automation, Seoul, South Korea,
May 21–26, pp.
1025
1030
.10.1109/ROBOT.2001.932684
18.
Xu
,
Q.
,
2013
, “
Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
663
673
.10.1109/TRO.2013.2239554
19.
Azimi
,
V.
,
Abolfazl Fakoorian
,
S.
,
Tien Nguyen
,
T.
, and
Simon
,
D.
,
2018
, “
Robust Adaptive Impedance Control With Application to a Transfemoral Prosthesis and Test Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
12
), p. 121002.10.1115/1.4040463
20.
Mohammadi
,
A.
,
Marquez
,
H. J.
, and
Tavakoli
,
M.
,
2017
, “
Nonlinear Disturbance Observers: Design and Applications to Euler-Lagrange Systems
,”
IEEE Control Syst. Mag.
,
37
(
4
), pp.
50
72
.10.1109/MCS.2017.2696760
21.
Radke
,
A.
, and
Zhiqiang
,
G.
,
2006
, “
A Survey of State and Disturbance Observers for Practitioners
,”
American Control Conference, Minneapolis, MN
, June 14–16, pp.
5183
5188
.10.1109/ACC.2006.1657545
22.
Bernstein
,
D. S.
,
2009
, “
Matrix Mathematics: Theory
,”
Facts, and Formulas
, Princeton University Press,
Princeton, NJ
.
23.
Gardiner
,
J. D.
,
1992
, “
Stabilizing Control for Second-Order Models and Positive Real Systems
,”
J. Guid., Control, Dyn.
,
15
(
1
), pp.
280
282
.10.2514/3.20833
24.
Blanchini
,
F.
,
1999
, “
Set Invariance in Control
,”
Automatica
,
35
(
11
), pp.
1747
1767
.10.1016/S0005-1098(99)00113-2
25.
Horn
,
R. A.
, and
Mathias
,
R.
,
1992
, “
Block-Matrix Generalizations of Schur's Basic Theorems on Hadamard Products
,”
Linear Algebra Appl.
,
172
, pp.
337
346
.10.1016/0024-3795(92)90033-7
26.
Slotine
,
J.-J. E.
, and
Coetsee
,
J. A.
,
1986
, “
Adaptive Sliding Controller Synthesis for Non-Linear Systems
,”
Int. J. Control
,
43
(
6
), pp.
1631
1651
.10.1080/00207178608933564
You do not currently have access to this content.