Abstract

This paper introduces an adaptive robust trajectory tracking controller design to provably realize stable bipedal robotic walking under parametric and unmodeled uncertainties. Deriving such a controller is challenging mainly because of the highly complex bipedal walking dynamics that are hybrid and involve nonlinear, uncontrolled state-triggered jumps. The main contribution of the study is the synthesis of a continuous-phase adaptive robust tracking control law for hybrid models of bipedal robotic walking by incorporating the construction of multiple Lyapunov functions into the control Lyapunov function. The evolution of the Lyapunov function across the state-triggered jumps is explicitly analyzed to construct sufficient conditions that guide the proposed control design for provably guaranteeing the stability and tracking the performance of the hybrid system in the presence of uncertainties. Simulation results on fully actuated bipedal robotic walking validate the effectiveness of the proposed approach in walking stabilization under uncertainties.

References

1.
Kolathaya
,
S.
, and
Ames
,
A. D.
,
2014
, “
Exponential Convergence of a Unified CLF Controller for Robotic Systems Under Parameter Uncertainty
,”
Proceedings of American Control Conference
, Portland, OR, June 4–6, pp.
3710
3715
.10.1109/ACC.2014.6859407
2.
Nguyen
,
Q.
, and
Sreenath
,
K.
,
2015
, “
Optimal Robust Control for Bipedal Robots Through Control Lyapunov Function Based Quadratic Programs
,”
Proceedings of Robotics: Science and System
, Boston, MA.http://www.roboticsproceedings.org/rss11/p48.pdf
3.
Yeatman
,
M.
,
Lv
,
G.
, and
Gregg
,
R. D.
,
2019
, “
Decentralized Passivity-Based Control With a Generalized Energy Storage Function for Robust Biped Locomotion
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
10
), p. 101007.10.1115/1.4043801
4.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Springer
.
5.
Krstic
,
M.
,
Kokotovic
,
P. V.
, and
Kanellakopoulos
,
I.
,
1995
,
Nonlinear and Adaptive Control Design
, John
Wiley & Sons
, Hoboken, NJ.
6.
Sastry
,
S.
, and
Bodson
,
M.
,
2011
,
Adaptive Control: Stability, Convergence and Robustness
,
Courier Corporation
, North Chelmsford, MA.
7.
Yuan
,
C.
,
2017
, “
Distributed Adaptive Switching Consensus Control of Heterogeneous Multi-Agent Systems With Switched Leader Dynamics
,”
Nonlinear Anal.: Hybrid Syst.
,
26
, pp.
274
283
.10.1016/j.nahs.2017.06.003
8.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
, Vol.
104
,
Prentice Hall
, Upper Saddle River, NJ.
9.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2007
,
Multivariable Feedback Control: Analysis and Design
, Vol.
2
, John
Wiley & Sons
, Hoboken, NJ.
10.
Yao
,
B.
, and
Tomizuka
,
M.
,
1997
, “
Adaptive Robust Control of SISO Nonlinear Systems in a Semi-Strict Feedback Form
,”
Automatica
,
33
(
5
), pp.
893
900
.10.1016/S0005-1098(96)00222-1
11.
Yao
,
B.
, and
Tomizuka
,
M.
,
2001
, “
Adaptive Robust Control of Mimo Nonlinear Systems in Semi-Strict Feedback Forms
,”
Automatica
,
37
(
9
), pp.
1305
1321
.10.1016/S0005-1098(01)00082-6
12.
Yao
,
B.
,
Hu
,
C.
, and
Wang
,
Q.
,
2011
, “
An Orthogonal Global Task Coordinate Frame for Contouring Control of Biaxial Systems
,”
IEEE/ASME Trans. Mechatronics
,
17
(
4
), pp.
622
634
.10.1109/TMECH.2011.2111377
13.
Liao
,
J.
,
Chen
,
Z.
, and
Yao
,
B.
,
2019
, “
Model-Based Coordinated Control of Four-Wheel Independently Driven Skid Steer Mobile Robot With Wheel–Ground Interaction and Wheel Dynamics
,”
IEEE Trans. Ind. Inf.
,
15
(
3
), pp.
1742
1752
.10.1109/TII.2018.2869573
14.
Chen
,
Z.
,
Li
,
C.
,
Yao
,
B.
,
Yuan
,
M.
, and
Yang
,
C.
,
2020
, “
Integrated Coordinated/Synchronized Contouring Control of a Dual-Linear-Motor-Driven Gantry
,”
IEEE Trans. Ind. Electron.
,
67
(
5
), pp.
3944
3954
.10.1109/TIE.2019.2921287
15.
Chen
,
Z.
,
Huang
,
F.
,
Yang
,
C.
, and
Yao
,
B.
,
2020
, “
Adaptive Fuzzy Backstepping Control for Stable Nonlinear Bilateral Teleoperation Manipulators With Enhanced Transparency Performance
,”
IEEE Trans. Ind. Electron.
,
67
(
1
), pp.
746
756
.10.1109/TIE.2019.2898587
16.
Yuan
,
M.
,
Chen
,
Z.
,
Yao
,
B.
, and
Liu
,
X.
,
2019
, “
Fast and Accurate Motion Tracking of a Linear Motor System Under Kinematic and Dynamic Constraints: An Integrated Planning and Control Approach
,”
IEEE Trans. Contr. Syst. Tech.
,
29
(
2
), pp.
804
811
.10.1109/TCST.2019.2955658
17.
Ilg
,
W.
,
Albiez
,
J.
,
Jedele
,
H.
,
Berns
,
K.
, and
Dillmann
,
R.
,
1999
, “
Adaptive Periodic Movement Control for the Four Legged Walking Machine Bisam
,”
Proceedings IEEE International Conference Robotics Automation
, Vol.
3
, Detroit, MI, May 10–15, pp.
2354
2359
.10.1109/ROBOT.1999.770457
18.
Fujimoto
,
Y.
,
Obata
,
S.
, and
Kawamura
,
A.
,
1998
, “
Robust Biped Walking With Active Interaction Control Between Foot and Ground
,”
Proceedings IEEE International Conference Robotics Automation
, Vol.
3
, Leuven, Belgium, May 20, pp.
2030
2035
.10.1109/ROBOT.1998.680613
19.
Raibert
,
M.
,
Tzafestas
,
S.
, and
Tzafestas
,
C.
,
1993
, “
Comparative Simulation Study of Three Control Techniques Applied to a Biped Robot
,”
Proceedings of IEEE Conference on Systems, Man, and Cybernetics
, Vol.
1
, Le Touquet, France, Oct. 17–20, pp.
494
502
.10.1109/ICSMC.1993.384792
20.
Tzafestas
,
S.
,
Raibert
,
M.
, and
Tzafestas
,
C.
,
1996
, “
Robust Sliding-Mode Control Applied to a 5-Link Biped Robot
,”
J. Intel. Robot. Syst.
,
15
(
1
), pp.
67
133
.10.1007/BF00435728
21.
Zohdy
,
M. A.
, and
Zaher
,
A. A.
,
2000
, “
Robust Control of Biped Robots
,”
Proceedings of American Control Conference
, Vol.
3
, Chicago, IL, June 28–30, pp.
1473
1477
.10.1109/ACC.2000.879366
22.
Moosavian
,
S. A. A.
,
Takhmar
,
A.
, and
Alghooneh
,
M.
,
2007
, “
Regulated Sliding Mode Control of a Biped Robot
,”
International Conference on Mechatronics and Automation
, Harbin, Heilongjiang, China, Aug. 5–8, pp.
1547
1552
.10.1109/ICMA.2007.4303779
23.
Golliday
,
C.
, and
Hemami
,
H.
,
1977
, “
An Approach to Analyzing Biped Locomotion Dynamics and Designing Robot Locomotion Controls
,”
IEEE Trans. Autom. Control
,
22
(
6
), pp.
963
972
.10.1109/TAC.1977.1101650
24.
Goswami
,
A.
,
Thuilot
,
B.
, and
Espiau
,
B.
,
1998
, “
A Study of the Passive Gait of a Compass-Like Biped Robot: Symmetry and Chaos
,”
Int. J. Robot. Res.
,
17
(
12
), pp.
1282
1301
.10.1177/027836499801701202
25.
Hiskens
,
I. A.
,
2001
, “
Stability of Hybrid System Limit Cycles: Application to the Compass Gait Biped Robot
,”
Proceedings of IEEE Conference on Decision and Control
, Vol.
1
, Orlando, FL, Dec.4–7, pp.
774
779
.10.1109/CDC.2001.980200
26.
Hamed
,
K.
,
Safaee
,
B.
, and
Gregg
,
R. D.
,
2019
, “
Dynamic Output Controllers for Exponential Stabilization of Periodic Orbits for Multidomain Hybrid Models of Robotic Locomotion
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
12
), p. 121011.10.1115/1.4044618
27.
Zamani
,
A.
, and
Bhounsule
,
P. A.
,
2017
, “
Foot Placement and Ankle Push-Off Control for the Orbital Stabilization of Bipedal Robots
,”
Proceedings of International Conference on Intelligent Robots and Systems
, Vancouver, BC, Canada, Sept. 24–28, pp.
4883
4888
.10.1109/IROS.2017.8206366
28.
Rijnen
,
M.
,
Saccon
,
A.
, and
Nijmeijer
,
H.
,
2019
, “
Reference Spreading: Tracking Performance for Impact Trajectories of a 1DoF Setup
,”
IEEE Trans. Control Syst Technol.
,
28
(
3
), pp.
1124
1131
.10.1109/TCST.2019.2898953
29.
Grizzle
,
J.
,
Abba
,
G.
, and
Plestan
,
P.
,
2001
, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects
,”
IEEE Trans. Autom. Control
,
46
(
1
), pp.
51
64
.10.1109/9.898695
30.
Khalil
,
H. K.
,
1996
,
Nonlinear Control
,
Prentice Hall
, Upper Saddle River, NJ.
31.
Galeani
,
S.
,
Menini
,
L.
, and
Potini
,
A.
,
2012
, “
Robust Trajectory Tracking for a Class of Hybrid Systems: An Internal Model Principle Approach
,”
IEEE Trans. Autom. Control
,
57
(
2
), pp.
344
359
.10.1109/TAC.2011.2162884
32.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. S. G.
,
2016
, “
Bipedal Gait Recharacterization and Walking Encoding Generalization for Stable Dynamic Walking
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Stockholm, Sweden, May 16–21, pp.
1788
1793
.10.1109/ICRA.2016.7487324
33.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. S. G.
,
2018
, “
Exponential Stabilization of Fully Actuated Planar Bipedal Robotic Walking With Global Position Tracking Capabilities
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
5
), p.
051008
.10.1115/1.4038268
34.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. S. G.
,
2017
, “
Time-Dependent Orbital Stabilization of Underactuated Bipedal Walking
,”
Proceedings of American Control Conference
, Seattle, WA, May 24–26, pp.
4858
4863
.10.23919/ACC.2017.7963707
35.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. S. G.
,
2018
, “
Straight-Line Contouring Control of Fully Actuated 3-d Bipedal Robotic Walking
,”
Proceedings of American Control Conference
, Milwaukee, WI, June 27–29, pp.
2108
2113
.10.23919/ACC.2018.8431067
36.
Iqbal
,
A.
,
Gao
,
Y.
, and
Gu
,
Y.
,
2020
, “
Provably Stabilizing Controllers for Quadrupedal Robot Locomotion on Dynamic Rigid Platforms
,”
IEEE/ASME Trans. Mechatronics
,
25
(
4
), pp.
2035
2044
.10.1109/TMECH.2020.2999900
37.
Gu
,
Y.
, and
Yuan
,
C.
,
2020
, “Adaptive Robust Trajectory Tracking Control of Fully Actuated Bipedal Robotic Walking IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Boston, MA, July 6–9.10.1109/AIM43001.2020.9158814
38.
Fu
,
K. S.
,
Gonzalez
,
R.
, and
Lee
,
C. S. G.
,
1987
,
Robotics: Control, Sensing, Vision, and Intelligence
,
McGraw-Hill Education
, New York.
39.
Murray
,
R. M.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
40.
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Sinnet
,
R. W.
, and
Ames
,
A. D.
,
2014
, “
Models, Feedback Control, and Open Problems of 3D Bipedal Robotic Walking
,”
Automatica
,
50
(
8
), pp.
1955
1988
.10.1016/j.automatica.2014.04.021
41.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1987
, “
On the Adaptive Control of Robot Manipulators
,”
Int. J. Robot. Res.
,
6
(
3
), pp.
49
59
.10.1177/027836498700600303
42.
Yao
,
B.
,
1996
, “
Adaptive Robust Control of Nonlinear Systems With Application to Control of Mechanical Systems
,” Ph.D. thesis,
University of California
, Berkeley, CA.
43.
Ioannou
,
P. A.
, and
Sun
,
J.
,
2012
,
Robust Adaptive Control
,
Courier Corporation
, North Chelmsford, MA.
44.
Branicky
,
M. S.
,
1998
, “
Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
475
482
.10.1109/9.664150
45.
Bainov
,
D.
, and
Simeonov
,
P.
,
1993
,
Impulsive Differential Equations: Periodic Solutions and Applications
, Vol.
66
,
CRC Press
, Boca Raton, FL.
46.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
, Vol.
28
,
CRC Press
, Boca Raton, FL.
47.
Shih
,
C.-L.
,
Grizzle
,
J. W.
, and
Chevallereau
,
C.
,
2012
, “
From Stable Walking to Steering of a 3D Bipedal Robot With Passive Point Feet
,”
Robotica
,
30
(
7
), pp.
1119
1130
.10.1017/S026357471100138X
48.
Gao
,
Y.
,
Da
,
X.
, and
Gu
,
Y.
,
2020
, “
Impact-Aware Online Motion Planning for Fully-Actuated Bipedal Robot Walking
,”
Proceedings of American Control Conference
, Denver, CO, pp.
2100
2105
.
49.
Hamed
,
K. A.
,
Kim
,
J.
, and
Pandala
,
A.
,
2020
, “
Quadrupedal Locomotion Via Event-Based Predictive Control and QP-Based Virtual Constraints
,”
IEEE Robot. Autom. L.
,
5
(
3
), pp.
4463
4470
.10.1109/LRA.2020.3001471
50.
Ames
,
A. D.
,
Xu
,
X.
,
Grizzle
,
J. W.
, and
Tabuada
,
P.
,
2017
, “
Control Barrier Function Based Quadratic Programs for Safety Critical Systems
,”
IEEE Trans. Autom. Control
,
62
(
8
), pp.
3861
3876
.10.1109/TAC.2016.2638961
51.
Ames
,
A. D.
,
2014
, “
Human-Inspired Control of Bipedal Walking Robots
,”
IEEE Trans. Autom. Control
,
59
(
5
), pp.
1115
1130
.10.1109/TAC.2014.2299342
52.
Gao
,
Y.
, and
Gu
,
Y.
,
2019
, “
Global-Position Tracking Control of Multi-Domain Planar Bipedal Robotic Walking
,”
ASME
Paper No. 59148
.
You do not currently have access to this content.