Abstract

In this paper, we study the analytical and experimental control of a seven degrees-of-freedom (7DOF) robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method.

References

References
1.
Alvarez-Ramirez
,
J.
,
Santibanez
,
V.
, and
Campa
,
R.
,
2008
, “
Stability of Robot Manipulators Under Saturated PID Compensation
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1333
1341
.10.1109/TCST.2008.917875
2.
Choi
,
Y.
,
Chung
,
W. K.
, and
Suh
,
I. H.
,
2001
, “
Performance and H/sub /spl infin// Optimality of PID Trajectory Tracking Controller for Lagrangian Systems
,”
IEEE Trans. Rob. Autom.
,
17
(
6
), pp.
857
869
.10.1109/70.976011
3.
Jarrah
,
M. A.
, and
Al-Jarrah
,
O. M.
,
1999
, “
Position Control of a Robot Manipulator Using Continuous Gain Scheduling
,”
IEEE International Conference on Robotics and Automation
, Detroit, MI, May 10–15, Paper No. 99CH36288C.10.1109/ROBOT.1999.769957
4.
Sun
,
Y. L.
, and
Er
,
M. J.
,
2004
, “
Hybrid Fuzzy Control of Robotics Systems
,”
IEEE Trans. Fuzzy Syst.
,
12
(
6
), pp.
755
765
.10.1109/TFUZZ.2004.836097
5.
Karakasoglu
,
A.
,
Sudharsanan
,
S. I.
, and
Sundareshan
,
M. K.
,
1993
, “
Identification and Decentralized Adaptive Control Using Dynamical Neural Networks With Application to Robotic Manipulators
,”
IEEE Trans. Neural Networks
,
4
(
6
), pp.
919
930
.10.1109/72.286887
6.
Tan
,
K. K.
,
Huang
,
S.
, and
Lee
,
T. H.
,
2009
, “
Decentralized Adaptive Controller Design of Large-Scale Uncertain Robotic Systems
,”
Automatica
,
45
(
1
), pp.
161
166
.10.1016/j.automatica.2008.06.005
7.
Yang
,
Z.
,
Fukushima
,
Y.
, and
Qin
,
P.
,
2012
, “
Decentralized Adaptive Robust Control of Robot Manipulators Using Disturbance Observers
,”
IEEE Trans. Control Syst. Technol.
,
20
(
5
), pp.
1357
1365
.10.1109/TCST.2011.2164076
8.
Sundareshan
,
M. K.
, and
Koenig
,
M. A.
,
1985
, “
Decentralized Model Reference Adaptive Control of Robotic Manipulators
,”
American Control Conference
, Boston, MA, June 19–21, pp.
44
49
.10.23919/ACC.1985.4788576
9.
Seraji
,
H.
,
1989
, “
Decentralized Adaptive Control of Manipulators: Theory, Simulation, and Experimentation
,”
IEEE Trans. Rob. Autom.
,
5
(
2
), pp.
183
201
.10.1109/70.88039
10.
Colbaugh
,
R.
,
Seraji
,
H.
, and
Glass
,
K.
,
1994
, “
Decentralized Adaptive Control of Manipulators
,”
J. Rob. Syst.
,
11
(
5
), pp.
425
440
.10.1002/rob.4620110508
11.
Tarokh
,
M.
,
1996
, “
Decentralized Adaptive Tracking Control of Robot Manipulators
,”
J. Rob. Syst.
,
13
(
12
), pp.
803
816
.10.1002/(SICI)1097-4563(199612)13:12<803::AID-ROB3>3.0.CO;2-Z
12.
Liu
,
M.
,
1999
, “
Decentralized Control of Robot Manipulators: Nonlinear and Adaptive Approaches
,”
IEEE Trans. Autom. Control
,
44
(
2
), pp.
357
363
.10.1109/9.746266
13.
Chen
,
Y. H.
,
1991
, “
Decentralized Adaptive Robust Control Design: The Uncertainty is Time Varying
,”
ASME J. Dyn. Syst., Meas., Control
,
113
(
3
), pp.
515
518
.10.1115/1.2896441
14.
Hua
,
C.
,
Guan
,
X.
, and
Shi
,
P.
,
2005
, “
Robust Decentralized Adaptive Control for Interconnected Systems With Time Delays
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
4
), pp.
656
662
.10.1115/1.2101845
15.
Lyou
,
J.
, and
Bien
,
Z.
,
1985
, “
Decentralized Adaptive Stabilization of a Class of Large-Scale Interconnected Discrete Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
106
109
.10.1115/1.3140700
16.
Li
,
Y.
,
Lu
,
Z.
,
Zhou
,
F.
,
Dong
,
B.
,
Liu
,
K.
, and
Li
,
Y.
,
2019
, “
Decentralized Trajectory Tracking Control for Modular and Reconfigurable Robots With Torque Sensor: Adaptive Terminal Sliding Control-Based Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
6
), p. 061003.10.1115/1.4042550
17.
Hernández-Alemán
,
R.
,
Salas-Peña
,
O.
, and
León-Morales
,
J. D.
,
2017
, “
Decentralized Formation Control Based on Adaptive Super Twisting
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
4
), p. 044502.10.1115/1.4035170
18.
Watanabe
,
K.
,
1989
, “
A Decentralized Multiple Model Adaptive Filtering for Discrete-Time Stochastic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
111
(
3
), pp.
371
377
.10.1115/1.3153063
19.
Yan
,
J.-J.
,
2003
, “
Memoryless Adaptive Decentralized Sliding Mode Control for Uncertain Large-Scale Systems With Time-Varying Delays
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
172
176
.10.1115/1.1567315
20.
Hashemipour
,
S. H.
,
Vasegh
,
N.
, and
Sedigh
,
A. K.
,
2017
, “
Decentralized MRAC for Large-Scale Interconnected Systems With State and Input Delays by Integrators Inclusion
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
9
), p. 091009.10.1115/1.4036233
21.
Elmahdi
,
A.
,
Taha
,
A. F.
,
Sun
,
D.
, and
Panchal
,
J. H.
,
2015
, “
Decentralized Control Framework and Stability Analysis for Networked Control Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
5
), p. 051006.10.1115/1.4028789
22.
Ghasemi
,
A. H.
,
Hoagg
,
J. B.
, and
Seigler
,
T. M.
,
2016
, “
Decentralized Vibration and Shape Control of Structures With Colocated Sensors and Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
3
), p. 031011.10.1115/1.4032344
23.
Yeatman
,
M.
,
Lv
,
G.
, and
Gregg
,
R. D.
,
2019
, “
Decentralized Passivity-Based Control With a Generalized Energy Storage Function for Robust Biped Locomotion
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
10
), p. 101007.10.1115/1.4043801
24.
Wang
,
C.
, and
Li
,
D.
,
2011
, “
Decentralized PID Controllers Based on Probabilistic Robustness
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
6
), p. 061015.10.1115/1.4004781
25.
Kalat
,
S. T.
,
Faal
,
S. G.
, and
Onal
,
C. D.
,
2018
, “
A Decentralized, Communication-Free Force Distribution Method With Application to Collective Object Manipulation
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
9
), p. 091012.10.1115/1.4039669
26.
Kan
,
Z.
,
Klotz
,
J. R.
,
Shea
,
J. M.
,
Doucette
,
E. A.
, and
Dixon
,
W. E.
,
2017
, “
Decentralized Rendezvous of Nonholonomic Robots With Sensing and Connectivity Constraints
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
2
), p. 024501.10.1115/1.4034745
27.
Pagilla
,
P. R.
, and
Zhu
,
Y.
,
2005
, “
A Decentralized Output Feedback Controller for a Class of Large-Scale Interconnected Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
167
172
.10.1115/1.1870047
28.
Pavone
,
M.
, and
Frazzoli
,
E.
,
2007
, “
Decentralized Policies for Geometric Pattern Formation and Path Coverage
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
5
), pp.
633
643
.10.1115/1.2767658
29.
Brahmi
,
B.
,
Brahmi
,
A.
,
Saad
,
M.
,
Gauthier
,
G.
, and
Rahman
,
M. H.
,
2019
, “
Robust Adaptive Tracking Control of Uncertain Rehabilitation Exoskeleton Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
12
), p. 121007.10.1115/1.4044372
30.
Al Younes
,
Y.
,
Drak
,
A.
,
Noura
,
H.
,
Rabhi
,
A.
, and
El Hajjaji
,
A.
,
2016
, “
Robust Model-Free Control Applied to a Quadrotor Uav
,”
J. Intell. Rob. Syst.
,
84
(
1–4
), pp.
37
52
.10.1007/s10846-016-0351-2
31.
Villagra
,
J.
,
Join
,
C.
,
Haber
,
R.
, and
Fliess
,
M.
,
2020
, “
Model-Free Control for Machine Tools
,” preprint
arXiv:2005.08546
.https://arxiv.org/abs/2005.08546
32.
Han
,
D. K.
, and
Chang
,
P.-H.
,
2010
, “
Robust Tracking of Robot Manipulator With Nonlinear Friction Using Time Delay Control With Gradient Estimator
,”
J. Mech. Sci. Technol.
,
24
(
8
), pp.
1743
1752
.10.1007/s12206-010-0516-z
33.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
77
, pp.
215
221
.
34.
Bagheri
,
M.
,
Karafyllis
,
I.
,
Naseradinmousavi
,
P.
, and
Krstic
,
M.
,
2021
, “
Adaptive Control of a Two-Link Robot Using Batch Least-Square Identifier
,”
IEEE/CAA J. Automatica Sin.
,
8
(
1
), pp.
86
93
.10.1109/JAS.2020.1003459
35.
Bagheri
,
M.
, and
Naseradinmousavi
,
P.
,
2017
, “
Novel Analytical and Experimental Trajectory Optimization of a 7DOF Baxter Robot: Global Design Sensitivity and Step Size Analyses
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
4153
4167
.10.1007/s00170-017-0877-x
36.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Morsi
,
R.
,
2017
, “
Experimental and Novel Analytical Trajectory Optimization of a 7DOF Baxter Robot: Global Design Sensitivity and Step Size Analyses
,”
ASME
Paper No. DSCC2017-5004.10.1115/DSCC2017-5004
37.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
,
2018
, “
Joint-Space Trajectory Optimization of a 7-Dof Baxter Using Multivariable Extremum Seeking
,”
Annual American Control Conference (ACC)
, Milwaukee, WI, June 27–29, pp.
2176
2181
.10.23919/ACC.2018.8430959
38.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
,
2018
, “
Multivariable Extremum Seeking for Joint-Space Trajectory Optimization of a High-Degrees-of-Freedom Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
11
), p.
111017
.10.1115/1.4040752
39.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
,
2018
, “
Analytical and Experimental Predictor-Based Time Delay Control of Baxter Robot
,”
ASME
Paper No. DSCC2018-9101.10.1115/DSCC2018-9101
40.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Krstić
,
M.
,
2019
, “
Feedback Linearization Based Predictor for Time Delay Control of a High-Dof Robot Manipulator
,”
Automatica
,
108
, p.
108485
.10.1016/j.automatica.2019.06.037
41.
Bertino
,
A.
,
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
,
2019
, “
Experimental Autonomous Deep Learning-Based 3D Path Planning for a 7-DOF Robot Manipulator
,”
ASME
Paper No. DSCC2019-8951.10.1115/DSCC2019-8951
42.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Krstić
,
M.
,
2019
, “
Time Delay Control of a High-DOF Robot Manipulator Through Feedback Linearization Based Predictor
,”
ASME
Paper No. DSCC2019-8915.10.1115/DSCC2019-8915
43.
Khalil
,
H. K.
,
2015
,
Nonlinear Control
, 3rd ed.,
Prentice Hall, Michigan State University
,
East Lansing, MI
.
You do not currently have access to this content.