Abstract
In this paper, we study the analytical and experimental control of a seven degrees-of-freedom (7DOF) robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method.
Issue Section:
Research Papers
References
References
1.
Alvarez-Ramirez
,
J.
,
Santibanez
,
V.
, and
Campa
,
R.
, 2008
, “
Stability of Robot Manipulators Under Saturated PID Compensation
,” IEEE Trans. Control Syst. Technol.
,
16
(6
), pp. 1333
–1341
.10.1109/TCST.2008.9178752.
Choi
,
Y.
,
Chung
,
W. K.
, and
Suh
,
I. H.
, 2001
, “
Performance and H/sub /spl infin// Optimality of PID Trajectory Tracking Controller for Lagrangian Systems
,” IEEE Trans. Rob. Autom.
,
17
(6
), pp. 857
–869
.10.1109/70.9760113.
Jarrah
,
M. A.
, and
Al-Jarrah
,
O. M.
, 1999
, “
Position Control of a Robot Manipulator Using Continuous Gain Scheduling
,” IEEE International Conference on Robotics and Automation
, Detroit, MI, May 10–15, Paper No. 99CH36288C.10.1109/ROBOT.1999.7699574.
Sun
,
Y. L.
, and
Er
,
M. J.
, 2004
, “
Hybrid Fuzzy Control of Robotics Systems
,” IEEE Trans. Fuzzy Syst.
,
12
(6
), pp. 755
–765
.10.1109/TFUZZ.2004.8360975.
Karakasoglu
,
A.
,
Sudharsanan
,
S. I.
, and
Sundareshan
,
M. K.
, 1993
, “
Identification and Decentralized Adaptive Control Using Dynamical Neural Networks With Application to Robotic Manipulators
,” IEEE Trans. Neural Networks
,
4
(6
), pp. 919
–930
.10.1109/72.2868876.
Tan
,
K. K.
,
Huang
,
S.
, and
Lee
,
T. H.
, 2009
, “
Decentralized Adaptive Controller Design of Large-Scale Uncertain Robotic Systems
,” Automatica
,
45
(1
), pp. 161
–166
.10.1016/j.automatica.2008.06.0057.
Yang
,
Z.
,
Fukushima
,
Y.
, and
Qin
,
P.
, 2012
, “
Decentralized Adaptive Robust Control of Robot Manipulators Using Disturbance Observers
,” IEEE Trans. Control Syst. Technol.
,
20
(5
), pp. 1357
–1365
.10.1109/TCST.2011.21640768.
Sundareshan
,
M. K.
, and
Koenig
,
M. A.
, 1985
, “
Decentralized Model Reference Adaptive Control of Robotic Manipulators
,” American Control Conference
, Boston, MA, June 19–21, pp. 44
–49
.10.23919/ACC.1985.47885769.
Seraji
,
H.
, 1989
, “
Decentralized Adaptive Control of Manipulators: Theory, Simulation, and Experimentation
,” IEEE Trans. Rob. Autom.
,
5
(2
), pp. 183
–201
.10.1109/70.8803910.
Colbaugh
,
R.
,
Seraji
,
H.
, and
Glass
,
K.
, 1994
, “
Decentralized Adaptive Control of Manipulators
,” J. Rob. Syst.
,
11
(5
), pp. 425
–440
.10.1002/rob.462011050811.
Tarokh
,
M.
, 1996
, “
Decentralized Adaptive Tracking Control of Robot Manipulators
,” J. Rob. Syst.
,
13
(12
), pp. 803
–816
.10.1002/(SICI)1097-4563(199612)13:12<803::AID-ROB3>3.0.CO;2-Z12.
Liu
,
M.
, 1999
, “
Decentralized Control of Robot Manipulators: Nonlinear and Adaptive Approaches
,” IEEE Trans. Autom. Control
,
44
(2
), pp. 357
–363
.10.1109/9.74626613.
Chen
,
Y. H.
, 1991
, “
Decentralized Adaptive Robust Control Design: The Uncertainty is Time Varying
,” ASME J. Dyn. Syst., Meas., Control
,
113
(3
), pp. 515
–518
.10.1115/1.289644114.
Hua
,
C.
,
Guan
,
X.
, and
Shi
,
P.
, 2005
, “
Robust Decentralized Adaptive Control for Interconnected Systems With Time Delays
,” ASME J. Dyn. Syst., Meas., Control
,
127
(4
), pp. 656
–662
.10.1115/1.210184515.
Lyou
,
J.
, and
Bien
,
Z.
, 1985
, “
Decentralized Adaptive Stabilization of a Class of Large-Scale Interconnected Discrete Systems
,” ASME J. Dyn. Syst., Meas., Control
,
107
(1
), pp. 106
–109
.10.1115/1.314070016.
Li
,
Y.
,
Lu
,
Z.
,
Zhou
,
F.
,
Dong
,
B.
,
Liu
,
K.
, and
Li
,
Y.
, 2019
, “
Decentralized Trajectory Tracking Control for Modular and Reconfigurable Robots With Torque Sensor: Adaptive Terminal Sliding Control-Based Approach
,” ASME J. Dyn. Syst., Meas., Control
,
141
(6
), p. 061003.10.1115/1.404255017.
Hernández-Alemán
,
R.
,
Salas-Peña
,
O.
, and
León-Morales
,
J. D.
, 2017
, “
Decentralized Formation Control Based on Adaptive Super Twisting
,” ASME J. Dyn. Syst., Meas., Control
,
139
(4
), p. 044502.10.1115/1.403517018.
Watanabe
,
K.
, 1989
, “
A Decentralized Multiple Model Adaptive Filtering for Discrete-Time Stochastic Systems
,” ASME J. Dyn. Syst., Meas., Control
,
111
(3
), pp. 371
–377
.10.1115/1.315306319.
Yan
,
J.-J.
, 2003
, “
Memoryless Adaptive Decentralized Sliding Mode Control for Uncertain Large-Scale Systems With Time-Varying Delays
,” ASME J. Dyn. Syst., Meas., Control
,
125
(2
), pp. 172
–176
.10.1115/1.156731520.
Hashemipour
,
S. H.
,
Vasegh
,
N.
, and
Sedigh
,
A. K.
, 2017
, “
Decentralized MRAC for Large-Scale Interconnected Systems With State and Input Delays by Integrators Inclusion
,” ASME J. Dyn. Syst., Meas., Control
,
139
(9
), p. 091009.10.1115/1.403623321.
Elmahdi
,
A.
,
Taha
,
A. F.
,
Sun
,
D.
, and
Panchal
,
J. H.
, 2015
, “
Decentralized Control Framework and Stability Analysis for Networked Control Systems
,” ASME J. Dyn. Syst., Meas., Control
,
137
(5
), p. 051006.10.1115/1.402878922.
Ghasemi
,
A. H.
,
Hoagg
,
J. B.
, and
Seigler
,
T. M.
, 2016
, “
Decentralized Vibration and Shape Control of Structures With Colocated Sensors and Actuators
,” ASME J. Dyn. Syst., Meas., Control
,
138
(3
), p. 031011.10.1115/1.403234423.
Yeatman
,
M.
,
Lv
,
G.
, and
Gregg
,
R. D.
, 2019
, “
Decentralized Passivity-Based Control With a Generalized Energy Storage Function for Robust Biped Locomotion
,” ASME J. Dyn. Syst., Meas., Control
,
141
(10
), p. 101007.10.1115/1.404380124.
Wang
,
C.
, and
Li
,
D.
, 2011
, “
Decentralized PID Controllers Based on Probabilistic Robustness
,”ASME J. Dyn. Syst., Meas., Control
,
133
(6
), p. 061015.10.1115/1.400478125.
Kalat
,
S. T.
,
Faal
,
S. G.
, and
Onal
,
C. D.
, 2018
, “
A Decentralized, Communication-Free Force Distribution Method With Application to Collective Object Manipulation
,” ASME J. Dyn. Syst., Meas., Control
,
140
(9
), p. 091012.10.1115/1.403966926.
Kan
,
Z.
,
Klotz
,
J. R.
,
Shea
,
J. M.
,
Doucette
,
E. A.
, and
Dixon
,
W. E.
, 2017
, “
Decentralized Rendezvous of Nonholonomic Robots With Sensing and Connectivity Constraints
,” ASME J. Dyn. Syst., Meas., Control
,
139
(2
), p. 024501.10.1115/1.403474527.
Pagilla
,
P. R.
, and
Zhu
,
Y.
, 2005
, “
A Decentralized Output Feedback Controller for a Class of Large-Scale Interconnected Nonlinear Systems
,” ASME J. Dyn. Syst., Meas., Control
,
127
(1
), pp. 167
–172
.10.1115/1.187004728.
Pavone
,
M.
, and
Frazzoli
,
E.
, 2007
, “
Decentralized Policies for Geometric Pattern Formation and Path Coverage
,” ASME J. Dyn. Syst., Meas., Control
,
129
(5
), pp. 633
–643
.10.1115/1.276765829.
Brahmi
,
B.
,
Brahmi
,
A.
,
Saad
,
M.
,
Gauthier
,
G.
, and
Rahman
,
M. H.
, 2019
, “
Robust Adaptive Tracking Control of Uncertain Rehabilitation Exoskeleton Robot
,” ASME J. Dyn. Syst., Meas., Control
,
141
(12
), p. 121007.10.1115/1.404437230.
Al Younes
,
Y.
,
Drak
,
A.
,
Noura
,
H.
,
Rabhi
,
A.
, and
El Hajjaji
,
A.
, 2016
, “
Robust Model-Free Control Applied to a Quadrotor Uav
,” J. Intell. Rob. Syst.
,
84
(1–4
), pp. 37
–52
.10.1007/s10846-016-0351-231.
Villagra
,
J.
,
Join
,
C.
,
Haber
,
R.
, and
Fliess
,
M.
, 2020
, “
Model-Free Control for Machine Tools
,” preprint arXiv:2005.08546
.https://arxiv.org/abs/2005.0854632.
Han
,
D. K.
, and
Chang
,
P.-H.
, 2010
, “
Robust Tracking of Robot Manipulator With Nonlinear Friction Using Time Delay Control With Gradient Estimator
,” J. Mech. Sci. Technol.
,
24
(8
), pp. 1743
–1752
.10.1007/s12206-010-0516-z33.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,” ASME J. Appl. Mech.
,
77
, pp. 215
–221
.34.
Bagheri
,
M.
,
Karafyllis
,
I.
,
Naseradinmousavi
,
P.
, and
Krstic
,
M.
, 2021
, “
Adaptive Control of a Two-Link Robot Using Batch Least-Square Identifier
,” IEEE/CAA J. Automatica Sin.
,
8
(1
), pp. 86
–93
.10.1109/JAS.2020.100345935.
Bagheri
,
M.
, and
Naseradinmousavi
,
P.
, 2017
, “
Novel Analytical and Experimental Trajectory Optimization of a 7DOF Baxter Robot: Global Design Sensitivity and Step Size Analyses
,” Int. J. Adv. Manuf. Technol.
,
93
(9–12
), pp. 4153
–4167
.10.1007/s00170-017-0877-x36.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Morsi
,
R.
, 2017
, “
Experimental and Novel Analytical Trajectory Optimization of a 7DOF Baxter Robot: Global Design Sensitivity and Step Size Analyses
,” ASME
Paper No. DSCC2017-5004.10.1115/DSCC2017-500437.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
, 2018
, “
Joint-Space Trajectory Optimization of a 7-Dof Baxter Using Multivariable Extremum Seeking
,” Annual American Control Conference (ACC)
, Milwaukee, WI, June 27–29, pp. 2176
–2181
.10.23919/ACC.2018.843095938.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
, 2018
, “
Multivariable Extremum Seeking for Joint-Space Trajectory Optimization of a High-Degrees-of-Freedom Robot
,” ASME J. Dyn. Syst., Meas., Control
,
140
(11
), p. 111017
.10.1115/1.404075239.
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
, 2018
, “
Analytical and Experimental Predictor-Based Time Delay Control of Baxter Robot
,” ASME
Paper No. DSCC2018-9101.10.1115/DSCC2018-910140.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Krstić
,
M.
, 2019
, “
Feedback Linearization Based Predictor for Time Delay Control of a High-Dof Robot Manipulator
,” Automatica
,
108
, p. 108485
.10.1016/j.automatica.2019.06.03741.
Bertino
,
A.
,
Bagheri
,
M.
,
Krstić
,
M.
, and
Naseradinmousavi
,
P.
, 2019
, “
Experimental Autonomous Deep Learning-Based 3D Path Planning for a 7-DOF Robot Manipulator
,” ASME
Paper No. DSCC2019-8951.10.1115/DSCC2019-895142.
Bagheri
,
M.
,
Naseradinmousavi
,
P.
, and
Krstić
,
M.
, 2019
, “
Time Delay Control of a High-DOF Robot Manipulator Through Feedback Linearization Based Predictor
,” ASME
Paper No. DSCC2019-8915.10.1115/DSCC2019-891543.
Khalil
,
H. K.
, 2015
, Nonlinear Control
, 3rd ed.,
Prentice Hall, Michigan State University
,
East Lansing, MI
.Copyright © 2021 by ASME
You do not currently have access to this content.