Abstract

The primary goal of this paper is to develop a formal foundation to design nonlinear feedback control algorithms that intrinsically couple legged robots with bio-inspired tails for robust locomotion in the presence of external disturbances. We present a hierarchical control scheme in which a high-level and real-time path planner, based on an event-based model predictive control (MPC), computes the optimal motion of the center of mass (COM) and tail trajectories. The MPC framework is developed for an innovative reduced-order linear inverted pendulum (LIP) model that is augmented with the tail dynamics. At the lower level of the control scheme, a nonlinear controller is implemented through the use of quadratic programming (QP) and virtual constraints to force the full-order dynamical model to track the prescribed optimal trajectories of the COM and tail while maintaining feasible ground reaction forces at the leg ends. The potential of the analytical results is numerically verified on a full-order simulation model of a quadrupedal robot augmented with a tail with a total of 20 degrees-of-freedom. The numerical studies demonstrate that the proposed control scheme coupled with the tail dynamics can significantly reduce the effect of external disturbances during quadrupedal locomotion.

References

References
1.
Vukobratović
,
M.
,
Borovac
,
B.
, and
Surla
,
D.
,
1990
,
Dynamics of Biped Locomotion
,
Springer
,
Berlin
.
2.
Goswami
,
A.
,
1999
, “
Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point
,”
Int. J. Rob. Res.
,
18
(
6
), pp.
523
533
.10.1177/02783649922066376
3.
Haddad
,
W.
,
Chellaboina
,
V.
, and
Nersesov
,
S.
,
2006
,
Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control
,
Princeton University Press
,
Princeton, NJ
.
4.
Goebel
,
R.
,
Sanfelice
,
R.
, and
Teel
,
A.
,
2012
,
Hybrid Dynamical Systems: Modeling, Stability, and Robustness
,
Princeton University Press
,
Princeton, NJ
.
5.
Grizzle
,
J.
,
Abba
,
G.
, and
Plestan
,
F.
,
2001
, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse effects
,”
IEEE Trans. Autom. Control
,
46
(
1
), pp.
51
64
.10.1109/9.898695
6.
Chevallereau
,
C.
,
Grizzle
,
J.
, and
Shih
,
C.-L.
,
2009
, “
Asymptotically Stable Walking of a five-Link Underactuated 3-D Bipedal Robot
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
37
50
.10.1109/TRO.2008.2010366
7.
Ames
,
A.
,
Galloway
,
K.
,
Sreenath
,
K.
, and
Grizzle
,
J.
,
2014
, “
Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
876
891
.10.1109/TAC.2014.2299335
8.
Spong
,
M.
, and
Bullo
,
F.
,
2005
, “
Controlled Symmetries and Passive Walking
,”
IEEE Trans. Autom. Control
,
50
(
7
), pp.
1025
1031
.10.1109/TAC.2005.851449
9.
Spong
,
M.
,
Holm
,
J.
, and
Lee
,
D.
,
2007
, “
Passivity-Based Control of Bipedal Locomotion
,”
IEEE Rob. Autom. Mag.
,
14
(
2
), pp.
30
40
.10.1109/MRA.2007.380638
10.
Manchester
,
I.
,
Mettin
,
U.
,
Iida
,
F.
, and
Tedrake
,
R.
,
2011
, “
Stable Dynamic Walking Over Uneven Terrain
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
265
279
.10.1177/0278364910395339
11.
Dai
,
H.
, and
Tedrake
,
R.
,
2013
, “
L 2-Gain Optimization for Robust Bipedal Walking on Unknown Terrain
,”
IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
3116
3123
.10.1109/ICRA.2013.6631010
12.
Song
,
G.
, and
Zefran
,
M.
,
2006
, “
Underactuated Dynamic Three-Dimensional Bipedal Walking
,”
IEEE International Conference on Robotics and Automation
, Orlando, FL, May 15–19, pp.
854
859
.10.1109/ROBOT.2006.1641816
13.
Gregg
,
R.
, and
Righetti
,
L.
,
2013
, “
Controlled Reduction With Unactuated Cyclic Variables: Application to 3D Bipedal Walking With Passive Yaw Rotation
,”
IEEE Trans. Autom. Control
,
58
(
10
), pp.
2679
2685
.10.1109/TAC.2013.2256011
14.
Byl
,
K.
, and
Tedrake
,
R.
,
2008
, “
Approximate Optimal Control of the Compass Gait on Rough Terrain
,”
IEEE
International Conference on Robotics and Automation, Pasadena, CA, May 19–23, pp.
1258
1263
.10.1109/ROBOT.2008.4543376
15.
Akbari Hamed
,
K.
, and
Gregg
,
R. D.
,
2019
, “
Decentralized Event-Based Controllers for Robust Stabilization of Hybrid Periodic Orbits: Application to Underactuated 3D Bipedal Walking
,”
IEEE Trans. Autom. Control
,
64
(
6
), pp.
2266
2281
.10.1109/TAC.2018.2863184
16.
Akbari Hamed
,
K.
, and
Grizzle
,
J.
,
2014
, “
Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
365
381
.10.1109/TRO.2013.2287831
17.
Chevallereau
,
C.
,
Abba
,
G.
,
Aoustin
,
Y.
,
Plestan
,
F.
,
Westervelt
,
E.
,
Canudas-de Wit
,
C.
, and
Grizzle
,
J.
,
2003
, “
RABBIT: A Testbed for Advanced Control Theory
,”
IEEE Control Syst. Mag.
,
23
(
5
), pp.
57
79
.10.1109/MCS.2003.1234651
18.
Morris
,
B.
, and
Grizzle
,
J.
,
2009
, “
Hybrid Invariant Manifolds in Systems With Impulse Effects With Application to Periodic Locomotion in Bipedal Robots
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1751
1764
.10.1109/TAC.2009.2024563
19.
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2009
, “
The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1779
1793
.10.1109/TAC.2009.2024565
20.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2011
, “
Compliant Hybrid Zero Dynamics Controller for Achieving Stable, Efficient and Fast Bipedal Walking on MABEL
,”
Int. J. Rob. Res.
,
30
(
9
), pp.
1170
1193
.10.1177/0278364910379882
21.
Collins
,
S.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
22.
Johnson
,
A. M.
,
Burden
,
S. A.
, and
Koditschek
,
D. E.
,
2016
, “
A Hybrid Systems Model for Simple Manipulation and Self-Manipulation Systems
,”
Int. J. Rob. Res.
,
35
(
11
), pp.
1354
1392
.10.1177/0278364916639380
23.
Burden
,
S. A.
,
Sastry
,
S. S.
,
Koditschek
,
D. E.
, and
Revzen
,
S.
,
2016
, “
Event–Selected Vector Field Discontinuities Yield Piecewise–Differentiable Flows
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
2
), pp.
1227
1267
.10.1137/15M1016588
24.
Vasudevan
,
R.
,
2017
,
Hybrid System Identification Via Switched System Optimal Control for Bipedal Robotic Walking
,
Springer International Publishing
,
Cham, Switzerland
, pp.
635
650
.
25.
Veer
,
S.
,
Rakesh
., and
Poulakakis
,
I.
,
2019
, “
Input-to-State Stability of Periodic Orbits of Systems With Impulse Effects Via Poincaré Analysis
,”
IEEE Trans. Autom. Control
,
64
(
11
), pp.
4583
4598
.10.1109/TAC.2019.2909684
26.
Hereid
,
A.
,
Hubicki
,
C. M.
,
Cousineau
,
E. A.
, and
Ames
,
A. D.
,
2018
, “
Dynamic Humanoid Locomotion: A Scalable Formulation for HZD Gait Optimization
,”
IEEE Trans. Rob.
,
34
(
2
), pp.
370
387
.10.1109/TRO.2017.2783371
27.
Posa
,
M.
,
Tobenkin
,
M.
, and
Tedrake
,
R.
,
2016
, “
Stability Analysis and Control of Rigid-Body Systems With Impacts and Friction
,”
IEEE Trans. Autom. Control
,
61
(
6
), pp.
1423
1437
.10.1109/TAC.2015.2459151
28.
Hurmuzlu
,
Y.
, and
Marghitu
,
D. B.
,
1994
, “
Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
82
92
.10.1177/027836499401300106
29.
Akbari Hamed
,
K.
,
Safaee
,
B.
, and
Gregg
,
R. D.
,
2019
, “
Dynamic Output Controllers for Exponential Stabilization of Periodic Orbits for Multi-Domain Hybrid Models of Robotic Locomotion
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
12
), p.
121011
.10.1115/1.4044618
30.
Ames
,
A. D.
,
Gregg
,
R. D.
,
Wendel
,
E. D. B.
, and
Sastry
,
S.
,
2007
, “
On the Geometric Reduction of Controlled Three-Dimensional Bipedal Robotic Walkers
,”
Lagrangian and Hamiltonian Methods for Nonlinear Control
,
Springer
,
Berlin, pp.
183
196
.
31.
Gregg
,
R. D.
, and
Spong
,
M. W.
,
2010
, “
Reduction-Based Control of Three-Dimensional Bipedal Walking Robots
,”
Int. J. Rob. Res.
,
29
(
6
), pp.
680
702
.10.1177/0278364909104296
32.
Shiriaev
,
A.
,
Freidovich
,
L.
, and
Gusev
,
S.
,
2010
, “
Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom
,”
IEEE Trans. Autom. Control
,
55
(
4
), pp.
893
906
.10.1109/TAC.2010.2042000
33.
Westervelt
,
E.
,
Grizzle
,
J.
, and
Koditschek
,
D.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
34.
Westervelt
,
E.
,
Grizzle
,
J.
,
Chevallereau
,
C.
,
Choi
,
J.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
Taylor & Francis/CRC
,
Boca Raton, FL
.
35.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
, 3rd ed.,
Springer
,
Verlag, London
.
36.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2013
, “
Embedding Active Force Control Within the Compliant Hybrid Zero Dynamics to Achieve Stable, Fast Running on MABEL
,”
Int. J. Rob. Res.
,
32
(
3
), pp.
324
345
.10.1177/0278364912473344
37.
Martin
,
A. E.
,
Post
,
D. C.
, and
Schmiedeler
,
J. P.
,
2014
, “
The Effects of Foot Geometric Properties on the Gait of Planar Bipeds Walking Under HZD-Based Control
,”
Int. J. Rob. Res.
,
33
(
12
), pp.
1530
1543
.10.1177/0278364914532391
38.
Ramezani
,
A.
,
Hurst
,
J. W.
,
Akbari Hamed
,
K.
, and
Grizzle
,
J. W.
,
2014
, “
Performance Analysis and Feedback Control of ATRIAS, A Three-Dimensional Bipedal Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021012
.10.1115/1.4025693
39.
Akbari Hamed
,
K.
,
Buss
,
B.
, and
Grizzle
,
J.
,
2016
, “
Exponentially Stabilizing Continuous-Time Controllers for Periodic Orbits of Hybrid Systems: Application to Bipedal Locomotion With Ground Height Variations
,”
Int. J. Rob. Res.
,
35
(
8
), pp.
977
999
.10.1177/0278364915593400
40.
Akbari Hamed
,
K.
,
Ma
,
W.
, and
Ames
,
A. D.
,
2019
, “
Dynamically Stable 3D Quadrupedal Walking With Multi-Domain Hybrid System Models and Virtual Constraint Controllers
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
4588
4595
.10.23919/ACC.2019.8815085
41.
Cao
,
Q.
, and
Poulakakis
,
I.
,
2016
, “
Quadrupedal Running With a Flexible Torso: Control and Speed Transitions With Sums-of-Squares Verification
,”
Artif. Life Rob.
,
21
(
4
), pp.
384
392
.10.1007/s10015-016-0330-5
42.
Akbari Hamed
,
K.
,
Kim
,
J.
, and
Pandala
,
A.
,
2020
, “
Quadrupedal Locomotion Via Event-Based Predictive Control and QP-Based Virtual Constraints
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4463
4470
.10.1109/LRA.2020.3001471
43.
Gregg
,
R.
, and
Sensinger
,
J.
,
2014
, “
Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
246
254
.10.1109/TCST.2012.2236840
44.
Zhao
,
H.
,
Horn
,
J.
,
Reher
,
J.
,
Paredes
,
V.
, and
Ames
,
A. D.
,
2017
, “
First Steps Toward Translating Robotic Walking to Prostheses: A Nonlinear Optimization Based Control Approach
,”
Auton. Rob.
,
41
(
3
), pp.
725
742
.10.1007/s10514-016-9565-1
45.
Martin
,
A. E.
, and
Gregg
,
R. D.
,
2017
, “
Stable, Robust Hybrid Zero Dynamics Control of Powered Lower-Limb Prostheses
,”
IEEE Trans. Autom. Control
,
62
(
8
), pp.
3930
3942
.10.1109/TAC.2017.2648040
46.
Agrawal
,
A.
,
Harib
,
O.
,
Hereid
,
A.
,
Finet
,
S.
,
Masselin
,
M.
,
Praly
,
L.
,
Ames
,
A.
,
Sreenath
,
K.
, and
Grizzle
,
J.
,
2017
, “
First Steps Towards Translating HZD Control of Bipedal Robots to Decentralized Control of Exoskeletons
,”
IEEE Access
,
5
, pp.
9919
9934
.10.1109/ACCESS.2017.2690407
47.
Hereid
,
A.
, and
Ames
,
A. D.
,
2017
, “
FROST: Fast Robot Optimization and Simulation Toolkit
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vancouver, BC, Canada, Sept. 24–28, pp.
719
726
.10.1109/IROS.2017.8202230
48.
Griffin
,
R. J.
,
Wiedebach
,
G.
,
Bertrand
,
S.
,
Leonessa
,
A.
, and
Pratt
,
J.
,
2017
, “
Walking Stabilization Using Step Timing and Location Adjustment on the Humanoid Robot, Atlas
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vancouver, BC, Canada, Sept. 24–28, pp.
667
673
.10.1109/IROS.2017.8202223
49.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
Sixth IEEE-RAS International Conference on Humanoid Robots
, Genoa, Italy, Dec. 4–6, pp.
200
207
.10.1109/ICHR.2006.321385
50.
Englsberger
,
J.
,
Ott
,
C.
,
Roa
,
M. A.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2011
, “
Bipedal Walking Control Based on Capture Point Dynamics
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
4420
4427
.10.1109/IROS.2011.6094435
51.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point
,”
IEEE International Conference on Robotics and Automation
, Vol.
2
, Taipei, Taiwan, Sept. 14–19, pp.
1620
1626.
10.1109/ROBOT.2003.1241826
52.
Di Carlo
,
J.
,
Wensing
,
P. M.
,
Katz
,
B.
,
Bledt
,
G.
, and
Kim
,
S.
,
2018
, “
Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Madrid, Spain, Oct. 1–5, pp.
1
9
.10.1109/IROS.2018.8594448
53.
Ding
,
Y.
,
Pandala
,
A.
, and
Park
,
H.
,
2019
, “
Real-Time Model Predictive Control for Versatile Dynamic Motions in Quadrupedal Robots
,”
International Conference on Robotics and Automation
, Montreal, QC, Canada, May 20–24, pp.
8484
8490
.10.1109/ICRA.2019.8793669
54.
Neunert
,
M.
,
Stäuble
,
M.
,
Giftthaler
,
M.
,
Bellicoso
,
C. D.
,
Carius
,
J.
,
Gehring
,
C.
,
Hutter
,
M.
, and
Buchli
,
J.
,
2018
, “
Whole-Body Nonlinear Model Predictive Control Through Contacts for Quadrupeds
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1458
1465
.10.1109/LRA.2018.2800124
55.
Bledt
,
G.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2017
, “
Policy-Regularized Model Predictive Control to Stabilize Diverse Quadrupedal Gaits for the Mit Cheetah
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vancouver, BC, Canada, Sept. 24–28, pp.
4102
4109
.10.1109/IROS.2017.8206268
56.
Fahmi
,
S.
,
Mastalli
,
C.
,
Focchi
,
M.
, and
Semini
,
C.
,
2019
, “
Passive Whole-Body Control for Quadruped Robots: Experimental Validation Over Challenging Terrain
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2553
2560
.10.1109/LRA.2019.2908502
57.
Kuindersma
,
S.
,
Permenter
,
F.
, and
Tedrake
,
R.
,
2014
, “
An Efficiently Solvable Quadratic Program for Stabilizing Dynamic Locomotion
,”
IEEE International Conference on Robotics and Automation
, Hong Kong, China, pp.
2589
2594
.
58.
Winkler
,
A. W.
,
Farshidian
,
F.
,
Pardo
,
D.
,
Neunert
,
M.
, and
Buchli
,
J.
,
2017
, “
Fast Trajectory Optimization for Legged Robots Using Vertex-Based ZMP Constraints
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
2201
2208
.10.1109/LRA.2017.2723931
59.
Lehmann
,
D.
,
Henriksson
,
E.
, and
Johansson
,
K. H.
,
2013
, “
Event-Triggered Model Predictive Control of Discrete-Time Linear Systems Subject to Disturbances
,” European Control Conference (
ECC
), Zurich, Switzerland, July 17–18, pp.
1156
1161
.10.23919/ECC.2013.6669580
60.
Libby
,
T.
,
Moore
,
T. Y.
,
Chang-Siu
,
E.
,
Li
,
D.
,
Cohen
,
D. J.
,
Jusufi
,
A.
, and
Full
,
R. J.
,
2012
, “
Tail-Assisted Pitch Control in Lizards, Robots and Dinosaurs
,”
Nature
,
481
(
7380
), pp.
181
187
.10.1038/nature10710
61.
Jusufi
,
A.
,
Kawano
,
D. T.
,
Libby
,
T.
, and
Full
,
R. J.
,
2010
, “
Righting and Turning in Mid-Air Using Appendage Inertia: Reptile Tails, Analytical Models and Bio-Inspired Robots
,”
Bioinspirat. Biomimet.
,
5
(
4
), p. 045001.10.1088/1748-3182/5/4/045001
62.
Attenborough
,
D.
,
2002–2003
, “The Life of Mammals: The Complete Series—Episode 5: Meat Eaters,” BBC Documentary.
63.
Brill
,
A. L.
,
De
,
A.
,
Johnson
,
A. M.
, and
Koditschek
,
D. E.
,
2015
, “
Tail-Assisted Rigid and Compliant Legged Leaping
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Hamburg, Germany, Sept. 28–Oct. 2, pp.
6304
6311
.10.1109/IROS.2015.7354277
64.
Zhao
,
J.
,
Zhao
,
T.
,
Xi
,
N.
,
Cintrón
,
F. J.
,
Mutka
,
M. W.
, and
Xiao
,
L.
,
2013
, “
Controlling Aerial Maneuvering of a Miniature Jumping Robot Using Its Tail
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
3802
3807
.10.1109/IROS.2013.6696900
65.
De
,
A.
, and
Koditschek
,
D. E.
,
2015
, “
Parallel Composition of Templates for Tail-Energized Planar Hopping
,”
IEEE International Conference on Robotics and Automation
, IEEE, Seattle, WA, May 26–30, pp.
4562
4569
.10.1109/ICRA.2015.7139831
66.
Wenger
,
G.
,
De
,
A.
, and
Koditschek
,
D. E.
,
2016
, “
Frontal Plane Stabilization and Hopping With a 2dof Tail
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Daejeon, Korea, Oct. 9–14, pp.
567
573
.10.1109/IROS.2016.7759110
67.
Briggs
,
R.
,
Lee
,
J.
,
Haberland
,
M.
, and
Kim
,
S.
,
2012
, “
Tails in Biomimetic Design: Analysis, Simulation, and Experiment
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE
, Vilamoura, Algarve, Portugal, Oct. 7–12, pp.
1473
1480
.10.1109/IROS.2012.6386240
68.
Patel
,
A.
, and
Braae
,
M.
,
2015
, “
An Actuated Tail Increases Rapid Acceleration Manoeuvres in Quadruped Robots
,”
Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering
,
Springer
,
Cham
, pp.
69
76
.
69.
Machairas
,
K.
, and
Papadopoulos
,
E.
,
2015
, “
On Quadruped Attitude Dynamics and Control Using Reaction Wheels and Tails
,”
European Control Conference
, Linz, Austria, pp.
753
758
.
70.
Libby
,
T.
,
Johnson
,
A. M.
,
Chang-Siu
,
E.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2016
, “
Comparative Design, Scaling, and Control of Appendages for Inertial Reorientation
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1380
1398
.10.1109/TRO.2016.2597316
71.
Rone
,
W. S.
,
Saab
,
W.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Controller Design, Analysis, and Experimental Validation of a Robotic Serpentine Tail to Maneuver and Stabilize a Quadrupedal Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
8
), p.
081002
.10.1115/1.4042948
72.
Heim
,
S. W.
,
Ajallooeian
,
M.
,
Eckert
,
P.
,
Vespignani
,
M.
, and
Ijspeert
,
A. J.
,
2016
, “
On Designing an Active Tail for Legged Robots: Simplifying Control Via Decoupling of Control Objectives
,”
Ind. Rob. Int. J.
,
43
(
3
), pp.
338
346
.10.1108/IR-10-2015-0190
73.
Zhang
,
X.
,
Gong
,
J.
, and
Yao
,
Y.
,
2016
, “
Effects of Head and Tail as Swinging Appendages on the Dynamic Walking Performance of a Quadruped Robot
,”
Robotica
,
34
(
12
), pp.
2878
2891
.10.1017/S0263574716000011
74.
Mishima
,
Y.
, and
Ozawa
,
R.
,
2014
, “
Design of a Robotic Finger Using Series Gear Chain Mechanisms
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
1
, Chicago, IL, pp.
2898
2903
.
75.
Domahidi
,
A.
,
Chu
,
E.
, and
Boyd
,
S.
,
2013
, “
ECOS: An SOCP Solver for Embedded Systems
,”
European Control Conference
, Zurich, Switzerland, pp.
3071
3076
.
76.
Hwangbo
,
J.
,
Lee
,
J.
, and
Hutter
,
M.
,
2018
, “
Per-Contact Iteration Method for Solving Contact Dynamics
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
895
902
.10.1109/LRA.2018.2792536
77.
Pandala
,
A. G.
,
Ding
,
Y.
, and
Park
,
H.
,
2019
, “
qpSWIFT: A Real-Time Sparse Quadratic Program Solver for Robotic Applications
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3355
3362
.10.1109/LRA.2019.2926664
78.
Felis
,
M. L.
,
2017
, “
RBDL: An Efficient Rigid-Body Dynamics Library Using Recursive Algorithms
,”
Auton. Rob.
,
41
(
2
), pp.
495
511
.10.1007/s10514-016-9574-0
79.
De Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
80.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
,
Van Damme
,
M.
, and
Lefeber
,
D.
,
2008
, “
Objective Locomotion Parameters Based Inverted Pendulum Trajectory Generator
,”
Rob. Auton. Syst.
,
56
(
9
), pp.
738
750
.10.1016/j.robot.2008.01.003
You do not currently have access to this content.