Abstract

This study introduces a track-following controller design to measure the rotor dynamics (RD) coefficient of the annular seal using active magnetic bearings. The annular seal is implemented contiguously to prevent leakage of fluid between the rotating shaft and stationary area of a rotating machine. The force caused by the seal at the contact point can cause vibrations, which should be identified for designing rotating machinery. The RD force is coupled with mechanical and fluid dynamics. Moreover, the dynamics depend on the operating conditions of the rotating machine, namely, the rotating speed and orbit of the rotating shaft. This study proposes a control system for the active magnetic bearing to measure the RD force directly at the arbitrary operating condition. The main controller is designed to satisfy a criterion of the frequency characteristics of the rotating system. In addition, the control system employs adaptive feed-forward cancellation (AFC). This can estimate and compensate for the RD force in the control system simultaneously. The experimental results indicate that the control system can achieve an arbitrary operating condition and measure the RD coefficient of the annular seal in real-time. As a result, the RD coefficient is identified based on the equation of motion.

References

1.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
2.
Vance
,
L. M.
,
1988
,
Rotordynamics of Turbomachinery, Wiley-Interscience.
Wiley
,
New York
.
3.
Eagle Industry Co, L.
,
2020
, “
Ekk Technologies, Mechanical Seal
,” Eagle Industry Co, Ltd., Tokyo, Japan, accessed May 27, https://www.ekkeagle.com/en/technology/mechanical/
4.
Iwatsubo
,
T.
,
Sheng
,
B.
, and
Matsumoto
,
T.
,
1989
, “
An Experimental Study on the Static and Dynamic Characteristics of Pump Annular Seals: 2nd Report, the Dynamic Characteristics for Small Concentric Whirling Motion
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C (Jpn)
,
55
(
510
), pp.
317
322
.10.1299/kikaic.55.317
5.
Kanemor
,
Y. I.
, and
Iwatsubo
,
T.
,
1989
, “
Experimental Study of Dynamical Characteristics of a Long Annular Seal: Force and Moment Due to Conical Whirl Rotation
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C (Jpn)
,
55
(
520
), pp.
2974
2981
.10.1299/kikaic.55.2974
6.
Childs
,
D. W.
, and
Vance
,
J.
,
1989
, “
Annular Gas Seals and Rotordynamics of Compressors and Turbines
,”
Proc. Turbomach. Symp.
,
55
(
520
), pp.
201
220
.10.21423/R1HT06
7.
Andres
,
L. S.
,
2006
, “
Annular Pressure Seals and Hydrostatic Bearings
,” Design and Analysis of High Speed Pumps, Educational Notes, North Atlantic Treaty Organization Science and Technology Organization, Neuilly-sur-Seine, France, Report No. RTO-EN-AVT-143.
8.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Seals—Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.10.1115/1.1611502
9.
Satyam
,
S. G.
, and
Mihir
,
K. G.
,
2010
, “
Dynamic and Static Characteristics of Wavy Annular Seals in Turbulent Flow
,”
Tribol. Online
,
5
(
1
), pp.
7
18
.10.2474/trol.5.7
10.
Childs
,
D. W.
,
Torres
,
J. M.
, and
Bullock
,
J. T.
,
2018
, “
Static and Rotordynamic Characteristics of Liquid Annular Seals With a Circumferentially-Grooved Stator and Smooth Rotor Using Three Levels of Circumferential Inlet-Fluid Rotation
,”
ASME
Paper No. GT2018-75325.10.1115/GT2018-75325
11.
Zutavern
,
Z. S.
, and
Childs
,
D. W.
,
2008
, “
Identification of Rotordynamic Forces in a Flexible Rotor System Using Magnetic Bearings
,”
ASME. J. Eng. Gas Turbines Power.
, 130(2), pp.
895
902
.10.1115/1.2799529
12.
Voigt
,
A. J.
,
Mandrup-Poulsen
,
C.
,
Nielsen
,
K. K.
, and
Santos
,
I. F.
,
2016
, “
Design and Calibration of a Full Scale Active Magnetic Bearing Based Test Facility for Investigating Rotordynamic Properties of Turbomachinery Seals in Multiphase Flow
,”
ASME
Paper No. GT2016-57893.10.1115/GT2016-57893
13.
Voigt
,
A. J.
,
2016
, “
Towards Identification of Rotordynamic Properties for Seals in Multiphase Flow Using Active Magnetic Bearings
,” Design and Commissioning of a Novel Test Facility, Technical University of Denmark, DCAMM Report No. S212.
14.
Tokunaga
,
Y.
,
Inoue
,
H.
,
Hiromatsu
,
J.
,
Iguchi
,
T.
,
Kuroki
,
Y.
, and
Uchiumi
,
M.
,
2016
, “
Rotordynamic Characteristics of Floating Ring Seals in Rocket Turbopumps
,”
J. Int. J. Fluid Mach. Syst.
,
9
(
3
), pp.
194
204
.10.5293/IJFMS.2016.9.3.194
15.
Jonas
,
L.
, and
Ilmar
,
S.
,
2017
, “
Design of Robust Amb Controllers for Rotors Subjected to Varying and Uncertain Seal Forces
,”
Mech. Eng. J.
,
4
(
5
), pp.
1
12
.10.1299/mej.16-00618
16.
Lauridsen
,
J. S.
, and
Santos
,
I. F.
,
2018
, “
On-Site Identification of Dynamic Annular Seal Forces in Turbo Machinery Using Active Magnetic Bearings: An Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082501
.10.1115/1.4038755
17.
Bodson
,
M.
,
Sacks
,
A.
, and
Khosla
,
P.
,
1994
, “
Harmonic Generation in Adaptive Feedforward Cancellation Schemes
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1939
1944
.10.1109/9.317130
18.
Yabui
,
S.
, and
Inoue
,
T.
,
2019
, “
Development of Optimal Controller Design Method to Compensate for Vibrations Caused by Unbalanced Force in Rotor System Based on Nyquist Diagram
,”
J. Vib. Control
,
25
(
4
), pp.
793
805
.10.1177/1077546318797173
19.
Yabui
,
S.
, and
Inoue
,
T.
,
2019
, “
Development of a Measurement System for Analyzing Periodic External Forces Acting on Rotating Machineries
,”
ASME J. Dyn. Syst., Meas. Control
,
141
(
10
), p.
101008
.10.1115/1.4043759
20.
Shinshi
,
T.
,
2012
, “
Magnetic Bearings - Fundamentals and Applications
,”
J. Jpn. Soc. Precis. Eng.
,
78
(
12
), pp.
1015
1057
.10.2493/jjspe.78.1054
21.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings—Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag Berlin Heidelberg
,
New Delhi, India
.
22.
Iwatsubo
,
T.
, and
Ishimaru
,
H.
,
2010
, “
Consideration of Whirl Frequency Ratio and Effective Damping Coefficient of Seal
,”
J. Syst. Des. Dyn.
,
4
(
1
), pp.
177
188
.10.1299/jsdd.4.177
23.
Doyle
,
J. C.
,
Francis
,
B. A.
, and
Tannenbaum
,
A. R.
,
1992
,
Feedback Control Theory
,
Macmillan Publishing Co
,
New York
.
24.
Messner, W. C.,
2008
, “
Classical Control Revisited: Variations on a Theme
,”
Proceedings of the Advanced Motion Control 10th IEEE International Workshop
, Trento, Italy, Mar. 26–28, pp.
15
20
.10.1109/AMC.2008.4516034
25.
Peng
,
K.
,
Chen
,
B. M.
,
Lee
,
T. H.
, and
Venkataramanan
,
V.
,
2004
, “
Design and Implementation of a Dual-Stage Actuated Hdd Servo System Via Composite Nonlinear Control Approach
,”
Mechatronics
,
14
(
9
), pp.
965
988
.10.1016/j.mechatronics.2004.06.002
26.
Yabui
,
S.
,
2019
, “
Compensation and Identification for External Disturbances in Head Positioning Systems of Hard Disk Drives Based on a Data-Based Design Method
,”
Mech. Syst. Signal Process.
,
115
, pp.
434
449
.10.1016/j.ymssp.2018.06.001
27.
Mathworks
,
2020
, “
Curve Fitting Toolbox - Fit Curves and Surfaces to Data Using Regression, Interpolation, and Smoothing
,” Mathworks, Natick, MA, accessed May 27, 2020, https://jp.mathworks.com/products/curvefitting.html
28.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
137
145
.10.1115/1.3451752
29.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seals Based on Hirs Lubrication Equation
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
429
436
.10.1115/1.3254633
30.
Andres
,
L. S.
,
1991
, “
Analysis of Variable Fluid Properties, Turbulent Annular Seals
,”
ASME J. Tribol.
,
113
(
4
), pp.
694
702
.10.1115/1.2920681
You do not currently have access to this content.