Abstract

In this paper, the issue of string stability for acceleration-controlled vehicles interconnected in a chain is studied. String stability is concerned with having bounded displacements between vehicles in such a way that displacements should not grow unboundedly with respect to the perturbation. Different definitions can be given to string stability: one that relates to the amplification of a local disturbance acting on one vehicle toward the whole vehicle chain, more strict definition that is related to the boundedness of vector norm of displacements with respect to the bounded vector norm of disturbance inputs acting on all vehicles; and, most practical definition that considers the boundedness of signal norm of each individual displacement with respect to the bounded signal norm of disturbance inputs acting on all vehicles, independently from the number of vehicles. It has been proven that these definitions are all impossible to be achieved using any linear homogeneous unidirectional distributed controllers with constant spacing policy. This paper proposes linear heterogeneous controllers where each vehicle behaves differently from others in a vehicle chain. We prove that three different definitions of string stability can be attained using the proposed heterogeneous controller. We propose sufficient conditions to guarantee string stability and boundedness of acceleration of each vehicle. Finally, simulation results are given to illustrate the effectiveness of proposed heterogeneous control synthesis.

References

References
1.
Chu
,
K. C.
,
1974
, “
Decentralized Control of High-Speed Vehicular Strings
,”
Transp. Sci.
,
8
(
4
), pp.
361
384
.10.1287/trsc.8.4.361
2.
Sheikholeslam
,
S.
, and
Desoer
,
C.
,
1990
, “
Longitudinal Control of a Platoon of Vehicles
,”
Proceedings of American Control Conference
, San Diego, CA, May 23–25, pp.
291
297
.10.23919/ACC.1990.4790743
3.
Levine
,
W.
, and
Athans
,
M.
,
1966
, “
On the Optimal Error Regulation of a String of Moving Vehicles
,”
IEEE Trans. Autom. Control
,
11
(
3
), pp.
355
361
.10.1109/TAC.1966.1098376
4.
Farnam
,
A.
,
2018
, “
Towards Impossibility and Possibility Results for String Stability of Platoon of Vehicles
,” Ph.D. thesis,
Ghent University
, Ghent, Belgium.
5.
Yamamoto
,
K.
, and
Smith
,
M. C.
,
2015
, “
Bounded Disturbance Amplification for Mass Chains With Passive Interconnection
,”
IEEE Trans. Autom. Control
,
47
, pp.
2534
2542
.https://ieeexplore.ieee.org/document/7258335
6.
Ajorlou
,
A.
,
Asadi
,
M. M.
,
Aghdam
,
A. G.
, and
Blouin
,
S.
,
2015
, “
Distributed Consensus Control of Unicycle Agents in the Presence of External Disturbances
,”
Syst. Control Lett.
,
82
, pp.
86
90
.10.1016/j.sysconle.2015.05.003
7.
Clark
,
A.
,
Alomair
,
B.
,
Bushnell
,
L.
, and
Poovendran
,
R.
,
2015
, “
Input Selection for Disturbance Rejection in Networked Cyber-Physical Systems
,”
IEEE Conference on Decision and Control
, Osaka, Japan, Dec. 15–18, pp.
15
18
.10.1109/CDC.2015.7401996
8.
Farnam
,
A.
, and
Sarlette
,
A.
,
2020
, “
Towards a Comprehensive Impossibility Result for String Stability
,”
IEEE Trans. Autom. Control
,
65
(
4
), pp.
1652
1659
.10.1109/TAC.2019.2929967
9.
Barooah
,
P.
, and
Hespanha
,
J. P.
,
2005
, “
Error Amplification and Disturbance Propagation in Vehicle Strings With Decentralised Linear Control
,”
Proceedings of IEEE Conference on Decision and Control
, Seville, Spain, Dec.15, pp.
4964
4969
.10.1109/CDC.2005.1582948
10.
Farnam
,
A.
, and
Sarlette
,
A.
,
2017
, “
String Stability Towards Leader Thanks to Asymmetric Bidirectional Controller
,”
20th World Congress of the International Federation of Automatic Control
, pp.
10335
10341
.
11.
Klinge
,
S.
, and
Middleton
,
R. H.
,
2009
, “
Time Headway Requirements for String Stability of Homogenous Linear Unidirectionally Connected Systems
,”
Proceedings of IEEE Conference on Decision and Control
, Shanghai, China, Dec. 15–18, pp.
1992
1997
.
12.
Rogge
,
J. A.
, and
Aeyels
,
D.
,
2008
, “
Vehicle Platoons Through Ring Coupling
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1370
1377
.10.1109/TAC.2008.925812
13.
Knorn
,
S.
,
Donaire
,
A.
,
Aguero
,
J. C.
, and
Middleton
,
R. H.
,
2014
, “
Passivity-Based Control for Multi-Vehicle Systems Subject to String Constraints
,”
Automatica
,
50
(
12
), pp.
3224
3230
.10.1016/j.automatica.2014.10.038
14.
Farnam
,
A.
, and
Sarlette
,
A.
,
2018
, “
About Strong String Stability of a Vehicle Chain With Time-Headway Control
,”
IEEE Conference on Decision and Control (CDC)
, Toulouse, France, July, pp.
5077
5083
.
15.
Farnam
,
A.
, and
Sarlette
,
A.
,
2019
, “
About String Stability of a Vehicle Chain With Unidirectional Controller
,”
Eur. J. Control
,
50
, pp.
138
144
.10.1016/j.ejcon.2019.03.002
16.
Zhou
,
Y.
,
Wang
,
M.
, and
Ahn
,
S.
,
2019
, “
Distributed Model Predictive Control Approach for Cooperative Car-Following With Guaranteed Local and String Stability
,”
Transp. Res. Part B
,
128
, pp.
69
86
.10.1016/j.trb.2019.07.001
17.
Ploeg
,
J.
,
Shukla
,
D. P.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2014
, “
Con Troller Synthesis for String Stability of Vehicle Platoons
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
2
), pp.
854
865
.10.1109/TITS.2013.2291493
18.
Ploeg
,
J.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2014
, “
Lp String Stability of Cascaded Systems: Application to Vehicle Platooning
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
786
793
.10.1109/TCST.2013.2258346
19.
Öncü
,
S.
,
Ploeg
,
J.
,
Van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2014
, “
Cooperative Adaptive Cruise Control: Network-Aware Analysis of String Stability
,”
IEEE Trans. Intell. Transp. Syst.
,
15
, pp.
1527
1537
.10.1109/TITS.2014.2302816
20.
Ploeg
,
J.
,
Kazerooni
,
E. S.
,
Lijster
,
G.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2015
, “
Graceful Degradation of Cooperative Adaptive Cruise Control
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
1
), pp.
488
497
.10.1109/TITS.2014.2349498
21.
Besselink
,
B.
, and
Johansson
,
K. H.
,
2017
, “
String Stability and a Delay-Based Spacing Policy for Vehicle Platoons Subject to Disturbances
,”
IEEE Trans. Autom. Control
,
62
(
9
), pp.
4376
4391
.10.1109/TAC.2017.2682421
22.
Farnam
,
A.
, and
Crevecoeur
,
G.
,
2019
, “
About Satisfying String Stability Using Heterogeneous Unidirectional Controllers
,”
International Conference on Control, Decision and Information Technologies
, Paris, France, Apr. 23–26, pp.
97
102
.10.1109/CoDIT.2019.8820350
23.
Shaw
,
E.
, and
Hedrick
,
J. K.
,
2007
, “
Controller Design for String Stable Heterogeneous Vehicle Strings
,”
IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
2868
2875
.10.1109/CDC.2007.4435011
24.
Swaroop
,
D.
, and
Hedrick
,
J. K.
,
1996
, “
String Stability of Interconnected Systems
,”
IEEE Trans. Autom. Control
,
41
(
3
), pp.
349
357
.10.1109/9.486636
25.
Defeng
,
H.
,
Yujie
,
S.
, and
Xiulan
,
S.
,
2019
, “
Weight-Free Multi-Objective Predictive Cruise Control of Autonomous Vehicles in Integrated Perturbation Analysis and Sequential Quadratic Programming Optimization Framework
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
9
), p.
091015
.10.1115/1.4043270
You do not currently have access to this content.