Abstract

Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries can improve the durability, reliability, and maintainability of battery system operation in electric vehicles. To achieve high-accuracy RUL predictions, it is necessary to develop an effective method for long-term nonlinear degradation prediction and quantify the uncertainty of the prediction results. To this end, this paper proposes a hybrid approach for lithium-ion battery RUL prediction based on particle filter (PF) and long short-term memory (LSTM) neural network. First, based on the training set, the model parameters are iteratively updated using the PF algorithm. Second, the LSTM model parameters are obtained using the training set. The mean and standard deviation in the prediction stage are obtained through Monte Carlo (MC) dropout. Finally, the mean value predicted by MC-dropout is used as the measurement for the PF in the prediction phase, the standard deviation represents the uncertainty of the prediction result, and the mean and standard deviation are integrated into the measurement equation of the model. The experimental results show that the proposed hybrid approach has better prediction accuracy than the PF, LSTM algorithm, and two other types of hybrid approaches. The hybrid approach can obtain a narrower confidence interval.

References

1.
Zheng
,
X.
, and
Fang
,
H.
,
2015
, “
An Integrated Unscented Kalman Filter and Relevance Vector Regression Approach for Lithium-Ion Battery Remaining Useful Life and Short-Term Capacity Prediction
,”
Reliab. Eng. Syst. Saf.
,
144
, pp.
74
82
.10.1016/j.ress.2015.07.013
2.
He
,
W.
,
Williard
,
N.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2011
, “
Prognostics of Lithium-Ion Batteries Based on Dempster–Shafer Theory and the Bayesian Monte Carlo Method
,”
J. Power Sources
,
196
(
23
), pp.
10314
10321
.10.1016/j.jpowsour.2011.08.040
3.
Feng
,
F.
,
Hu
,
X.
,
Hu
,
L.
,
Hu
,
F.
,
Li
,
Y.
, and
Zhang
,
L.
,
2019
, “
Propagation Mechanisms and Diagnosis of Parameter Inconsistency Within Li-Ion Battery Packs
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
102
113
.10.1016/j.rser.2019.05.042
4.
Barré
,
A.
,
Deguilhem
,
B.
,
Grolleau
,
S.
,
Gérard
,
M.
,
Suard
,
F.
, and
Riu
,
D.
,
2013
, “
A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications
,”
J. Power Sources
,
241
, pp.
680
689
.10.1016/j.jpowsour.2013.05.040
5.
Hu
,
X.
,
Jiang
,
H.
,
Feng
,
F.
, and
Liu
,
B.
,
2020
, “
An Enhanced Multi-State Estimation Hierarchy for Advanced Lithium-Ion Battery Management
,”
Appl. Energy
,
257
, p.
114019
.10.1016/j.apenergy.2019.114019
6.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2011
, “
Remaining Useful Life Estimation – A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
.10.1016/j.ejor.2010.11.018
7.
Hu
,
X.
,
Feng
,
F.
,
Liu
,
K.
,
Zhang
,
L.
,
Xie
,
J.
, and
Liu
,
B.
,
2019
, “
State Estimation for Advanced Battery Management: Key Challenges and Future Trends
,”
Renewable Sustainable Energy Rev.
,
114
, p.
109334
.10.1016/j.rser.2019.109334
8.
Su
,
C.
, and
Chen
,
H. J.
,
2017
, “
A Review on Prognostics Approaches for Remaining Useful Life of Lithium-Ion Battery
,”
IOP Conf. Ser. Earth Environ. Sci.
, 93, p.
012040
.10.1088/1755-1315/93/1/012040
9.
Hu
,
X.
,
Yuan
,
H.
,
Zou
,
C.
,
Li
,
Z.
, and
Zhang
,
L.
,
2018
, “
Co-Estimation of State of Charge and State of Health for Lithium-Ion Batteries Based on Fractional-Order Calculus
,”
IEEE Trans. Veh. Technol.
,
67
(
11
), pp.
10319
10329
.10.1109/TVT.2018.2865664
10.
Koga
,
S.
,
Camacho-Solorio
,
L.
, and
Krstic
,
M.
,
2021
, “
State Estimation for Lithium-Ion Batteries With Phase Transition Materials Via Boundary Observers
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
4
), p. 041004.10.1115/1.4048779
11.
Zhang
,
L.
,
Mu
,
Z.
, and
Sun
,
C.
,
2018
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
,”
IEEE Access
,
6
, pp.
17729
17740
.10.1109/ACCESS.2018.2816684
12.
Yu
,
J.
,
2015
, “
State-of-Health Monitoring and Prediction of Lithium-Ion Battery Using Probabilistic Indication and State-Space Model
,”
IEEE Trans. Instrum. Meas.
,
64
(
11
), pp.
2937
2949
.10.1109/TIM.2015.2444237
13.
Dong
,
Z.
,
Dey
,
S.
,
Perez
,
H. E.
, and
Moura
,
S. J.
, “
Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Thermal Dynamics
,”
Proceedings of the American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
4042
4047
.10.23919/ACC.2017.7963575
14.
Feng
,
F.
,
Hu
,
X.
,
Liu
,
J.
,
Lin
,
X.
, and
Liu
,
B.
,
2019
, “
A Review of Equalization Strategies for Series Battery Packs: Variables, Objectives, and Algorithms
,”
Renewable Sustainable Energy Rev.
,
116
, p.
109464
.10.1016/j.rser.2019.109464
15.
Nuhic
,
A.
,
Terzimehic
,
T.
,
Soczka-Guth
,
T.
,
Buchholz
,
M.
, and
Dietmayer
,
K.
,
2013
, “
Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods
,”
J. Power Sources
,
239
, pp.
680
688
.10.1016/j.jpowsour.2012.11.146
16.
Li
,
X.
,
Wang
,
Z.
, and
Yan
,
J.
,
2019
, “
Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian Process Regression
,”
J. Power Sources
,
421
, pp.
56
67
.10.1016/j.jpowsour.2019.03.008
17.
Sbarufatti
,
C.
,
Corbetta
,
M.
,
Giglio
,
M.
, and
Cadini
,
F.
,
2017
, “
Adaptive Prognosis of Lithium-Ion Batteries Based on the Combination of Particle Filters and Radial Basis Function Neural Networks
,”
J. Power Sources
,
344
, pp.
128
140
.10.1016/j.jpowsour.2017.01.105
18.
Cheng
,
Y.
,
Zerhouni
,
N.
, and
Lu
,
C.
,
2018
, “
A Hybrid Remaining Useful Life Prognostic Method for Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
43
(
27
), pp.
12314
12327
.10.1016/j.ijhydene.2018.04.160
19.
Li
,
Y.
,
Liu
,
K.
,
Foley
,
A. M.
,
Zülke
,
A.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Van Mierlo
,
J.
, and
Hoster
,
H. E.
,
2019
, “
Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion Batteries: A Review
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109254
.10.1016/j.rser.2019.109254
20.
Hu
,
X.
,
Xu
,
L.
,
Lin
,
X.
, and
Pecht
,
M.
,
2020
, “
Battery Lifetime Prognostics
,”
Joule
,
4
(
2
), pp.
310
346
.10.1016/j.joule.2019.11.018
21.
Shi
,
J. Q.
,
Wang
,
B.
,
Murray-Smith
,
R.
, and
Titterington
,
D. M.
,
2007
, “
Gaussian Process Functional Regression Modeling for Batch Data
,”
Biometrics
,
63
(
3
), pp.
714
723
.10.1111/j.1541-0420.2007.00758.x
22.
Liu
,
D.
,
Zhou
,
J.
,
Pan
,
D.
,
Peng
,
Y.
, and
Peng
,
X.
,
2015
, “
Lithium-Ion Battery Remaining Useful Life Estimation With an Optimized Relevance Vector Machine Algorithm With Incremental Learning
,”
Measurement
,
63
, pp.
143
151
.10.1016/j.measurement.2014.11.031
23.
Liu
,
D.
,
Pang
,
J.
,
Zhou
,
J.
,
Peng
,
Y.
, and
Pecht
,
M.
,
2013
, “
Prognostics for State of Health Estimation of Lithium-Ion Batteries Based on Combination Gaussian Process Functional Regression
,”
Microelectron. Reliab.
,
53
(
6
), pp.
832
839
.10.1016/j.microrel.2013.03.010
24.
Datong
,
L.
,
Jingyue
,
P.
,
Jianbao
,
Z.
, and
Yu
,
P.
, “
Data-Driven Prognostics for Lithium-Ion Battery Based on Gaussian Process Regression
,”
Proceedings of the IEEE 2012 Prognostics and System Health Management Conference
(PHM-2012 Beijing), Beijing, China, May 23–25, pp.
1
5
.10.1109/PHM.2012.6228848
25.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.10.1109/TVT.2018.2805189
26.
Liu
,
J.
,
Wang
,
W.
,
Ma
,
F.
,
Yang
,
Y. B.
, and
Yang
,
C. S.
,
2012
, “
A Data-Model-Fusion Prognostic Framework for Dynamic System State Forecasting
,”
Eng. Appl. Artif. Intell.
,
25
(
4
), pp.
814
823
.10.1016/j.engappai.2012.02.015
27.
Chao
,
H.
,
Youn
,
B. D.
, and
Pingfeng
,
W.
, “
Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life
,”
Proceedings of the IEEE Conference on Prognostics and Health Management
, Montreal, QC, Canada, June 20–23, pp.
1
10
.10.1016/j.ress.2012.03.008
28.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley-Interscience
,
Hoboken, NJ
.
29.
Dong
,
H.
,
Jin
,
X.
,
Lou
,
Y.
, and
Wang
,
C.
,
2014
, “
Lithium-Ion Battery State of Health Monitoring and Remaining Useful Life Prediction Based on Support Vector Regression-Particle Filter
,”
J. Power Sources
,
271
, pp.
114
123
.10.1016/j.jpowsour.2014.07.176
30.
Hu
,
Y.
,
Baraldi
,
P.
,
Di Maio
,
F.
, and
Zio
,
E.
,
2015
, “
A Particle Filtering and Kernel Smoothing-Based Approach for New Design Component Prognostics
,”
Reliab. Eng. Syst. Saf.
,
134
, pp.
19
31
.10.1016/j.ress.2014.10.003
31.
Walker
,
E.
,
Rayman
,
S.
, and
White
,
R. E.
,
2015
, “
Comparison of a Particle Filter and Other State Estimation Methods for Prognostics of Lithium-Ion Batteries
,”
J. Power Sources
,
287
, pp.
1
12
.10.1016/j.jpowsour.2015.04.020
32.
Olivares
,
B. E.
,
Cerda Munoz
,
M. A.
,
Orchard
,
M. E.
, and
Silva
,
J. F.
,
2013
, “
Particle-Filtering-Based Prognosis Framework for Energy Storage Devices With a Statistical Characterization of State-of-Health Regeneration Phenomena
,”
IEEE Trans. Instrum. Meas.
,
62
(
2
), pp.
364
376
.10.1109/TIM.2012.2215142
33.
Nazari
,
M.
, and
Shamshirband
,
S.
,
2020
, “
The Particle Filter-Based Back Propagation Neural Network for Evapotranspiration Estimation
,”
ISH J. Hydraul. Eng.
,
26
(
3
), pp.
267
7
.10.1080/09715010.2018.1481462
34.
Tian
,
Y.
,
Lu
,
C.
,
Wang
,
Z.
, and
Tao
,
L.
,
2014
, “
Artificial Fish Swarm Algorithm-Based Particle Filter for Li-Ion Battery Life Prediction
,”
Math. Probl. Eng.
,
2014
, pp.
1
10
.10.1155/2014/564894
35.
An
,
D.
,
Choi
,
J.-H.
, and
Kim
,
N. H.
,
2013
, “
Prognostics 101: A Tutorial for Particle Filter-Based Prognostics Algorithm Using Matlab
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
161
169
.10.1016/j.ress.2013.02.019
36.
Li
,
L.
,
Saldivar
,
A. A. F.
,
Bai
,
Y.
, and
Li
,
Y.
,
2019
, “
Battery Remaining Useful Life Prediction With Inheritance Particle Filtering
,”
Energies
,
12
(
14
), p.
2784
.10.3390/en12142784
37.
Miao
,
Q.
,
Xie
,
L.
,
Cui
,
H.
,
Liang
,
W.
, and
Pecht
,
M.
,
2013
, “
Remaining Useful Life Prediction of Lithium-Ion Battery With Unscented Particle Filter Technique
,”
Microelectron. Reliab.
,
53
(
6
), pp.
805
810
.10.1016/j.microrel.2012.12.004
38.
Liu
,
J.
,
Li
,
Q.
,
Chen
,
W.
,
Yan
,
Y.
,
Qiu
,
Y.
, and
Cao
,
T.
,
2019
, “
Remaining Useful Life Prediction of PEMFC Based on Long Short-Term Memory Recurrent Neural Networks
,”
Int. J. Hydrogen Energy
,
44
(
11
), pp.
5470
5480
.10.1016/j.ijhydene.2018.10.042
39.
Chen
,
J.
,
Jing
,
H.
,
Chang
,
Y.
, and
Liu
,
Q.
,
2019
, “
Gated Recurrent Unit Based Recurrent Neural Network for Remaining Useful Life Prediction of Nonlinear Deterioration Process
,”
Reliab. Eng. Syst. Saf.
,
185
, pp.
372
382
.10.1016/j.ress.2019.01.006
40.
Elsheikh
,
A.
,
Yacout
,
S.
, and
Ouali
,
M.-S.
,
2019
, “
Bidirectional Handshaking LSTM for Remaining Useful Life Prediction
,”
Neurocomputing
,
323
, pp.
148
156
.10.1016/j.neucom.2018.09.076
41.
Greff
,
K.
,
Srivastava
,
R. K.
,
Koutnik
,
J.
,
Steunebrink
,
B. R.
, and
Schmidhuber
,
J.
,
2017
, “
LSTM: A Search Space Odyssey
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
28
(
10
), pp.
2222
2232
.10.1109/TNNLS.2016.2582924
42.
Guo
,
L.
,
Li
,
N.
,
Jia
,
F.
,
Lei
,
Y.
, and
Lin
,
J.
,
2017
, “
A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
,”
Neurocomputing
,
240
, pp.
98
109
.10.1016/j.neucom.2017.02.045
43.
Gal
,
Y.
, and
Ghahramani
,
Z.
,
2016
, “
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
,”
Proceedings of the 33rd International Conference on International Conference on Machine Learning JMLR.org
, New York, June 19–24, pp.
1050
1059
.10.5555/3045390.3045502
44.
Pearce
,
T. C.
,
Zaki
,
M.
,
Brintrup
,
A.
, and
Neely
,
A.
, “
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
,”
Proceedings of the UAI
, Tel Aviv, Israel, July 23–25, pp.
134
144
.
45.
Gadaleta, F.,
2019
, “
Know What You Predict: Estimating Uncertainty With Neural Networks
,” San Francisco, CA, accessed Jan. 21, 2019, https://medium.com/amethix/know-what-you-predict-estimating-uncertainty-with-neural-networks-3accdca12cc6
46.
Saha
,
B.
, and
Goebel
,
K.
,
2007
, “
Battery Data Set
,” NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA.
47.
Chang
,
Y.
,
Fang
,
H.
, and
Zhang
,
Y.
,
2017
, “
A New Hybrid Method for the Prediction of the Remaining Useful Life of a Lithium-Ion Battery
,”
Appl. Energy
,
206
, pp.
1564
1578
.10.1016/j.apenergy.2017.09.106
48.
Zhou
,
Y.
,
Huang
,
M.
,
Chen
,
Y.
, and
Tao
,
Y.
,
2016
, “
A Novel Health Indicator for on-Line Lithium-Ion Batteries Remaining Useful Life Prediction
,”
J. Power Sources
,
321
, pp.
1
10
.10.1016/j.jpowsour.2016.04.119
49.
Zhou
,
Y.
, and
Huang
,
M.
,
2016
, “
Lithium-Ion Batteries Remaining Useful Life Prediction Based on a Mixture of Empirical Mode Decomposition and ARIMA Model
,”
Microelectron. Reliab.
,
65
, pp.
265
273
.10.1016/j.microrel.2016.07.151
50.
Liu
,
D.
,
Luo
,
Y.
,
Liu
,
J.
,
Peng
,
Y.
,
Guo
,
L.
, and
Pecht
,
M.
,
2014
, “
Lithium-Ion Battery Remaining Useful Life Estimation Based on Fusion Nonlinear Degradation AR Model and RPF Algorithm
,”
Neural Comput. Appl.
,
25
(
3–4
), pp.
557
572
.10.1007/s00521-013-1520-x
51.
Wang
,
F.-K.
, and
Mamo
,
T.
,
2018
, “
A Hybrid Model Based on Support Vector Regression and Differential Evolution for Remaining Useful Lifetime Prediction of Lithium-Ion Batteries
,”
J. Power Sources
,
401
, pp.
49
54
.10.1016/j.jpowsour.2018.08.073
You do not currently have access to this content.