Abstract

Energy harvesting vibration absorbers (EHVAs) represent a novel type of vibration absorbers where the dissipated energy is harnessed in the absorber system. Conventional optimization-based methods can be utilized for optimal design of EHVAs, but this usually involves in iterative design procedures, particularly for approaching performance limits. In this note, a visualization technique is proposed. The problem of existence and uniqueness solutions is addressed; the intimate relationship between energy harvesting and vibration suppression performances is disclosed; and the fundamental issue of determining performance limit with this visualized method is solved. These features form solid contributions of the current proposal over those optimization-based design methods. The corresponding design procedures are illustrated and the claims are further validated through real-time simulations to the optimal design of EHVAs.

References

1.
Ankireddi
,
S.
, and
Yang
,
H. Y.
,
2000
, “
Directional Mass Dampers for Buildings Under Wind or Seismic Loads
,”
J. Wind Eng. Ind. Aerodyn.
,
85
(
2
), pp.
119
144
.10.1016/S0167-6105(99)00115-4
2.
Bortoluzzi
,
D.
,
Casciati
,
S.
,
Elia
,
L.
, and
Faravelli
,
L.
,
2015
, “
Design of a TMD Solution to Mitigate Wind-Induced Local Vibrations in an Existing Timber Footbridge
,”
Smart Struct. Syst.
,
16
(
3
), pp.
459
478
.10.12989/sss.2015.16.3.459
3.
Casciati
,
F.
, and
Giuliano
,
F.
,
2009
, “
Performance of Multi-TMD in the Towers of Suspension Bridges
,”
J. Vib. Control
,
15
(
6
), pp.
821
847
.10.1177/1077546308091455
4.
GERB,
2012
, “
Tuned Mass Dampers for Bridges, Buildings and Other Tall Structures
,”
GERB
, Berlin, pp.
1
83
.http://www.britec.co.kr/admin/clinic/upload/13-Tuned%20Mass%20Dampers%20for%20Bridges,%20Buildings%20and%20other%20Tall%20Structures.pdf
5.
Domaneschi
,
M.
,
Martinelli
,
L.
, and
Po
,
E.
,
2015
, “
Control of Wind Buffeting Vibrations in a Suspension Bridge by TMD: Hybridization and Robustness Issues
,”
Comput. Struct.
,
155
, pp.
3
17
.10.1016/j.compstruc.2015.02.031
6.
Dinh
,
V. N.
, and
Basu
,
B.
,
2015
, “
Passive Control of Floating Offshore Wind Turbine Nacelle and Spar Vibrations by Multiple Tuned Mass Dampers
,”
Struct. Control Health Monit.
,
22
(
1
), pp.
152
176
.10.1002/stc.1666
7.
Paddan
,
G.
, and
Griffin
,
M.
,
2002
, “
Evaluation of Whole-Body Vibration in Vehicles
,”
J. Sound Vib.
,
253
(
1
), pp.
195
213
.10.1006/jsvi.2001.4256
8.
Coyte
,
J. L.
,
Stirling
,
D.
,
Du
,
H.
, and
Ros
,
M.
,
2016
, “
Seated Whole-Body Vibration Analysis, Technologies, and Modeling: A Survey
,”
IEEE Trans. Syst., Man Cybernetic Syst.
,
46
(
6
), pp.
725
739
.10.1109/TSMC.2015.2458964
9.
Elias
,
S.
, and
Matsagar
,
V.
,
2017
, “
Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers
,”
Annu. Rev. Control
,
44
, pp.
129
156
.10.1016/j.arcontrol.2017.09.015
10.
Symans
,
M. D.
, and
Constantinou
,
M. C.
,
1999
, “
Semi-Active Control Systems for Seismic Protection of Structures: A State-of-the-Art Review
,”
Eng. Struct.
,
21
(
6
), pp.
469
487
.10.1016/S0141-0296(97)00225-3
11.
Sun
,
J. Q.
,
Jolly
,
M. R.
, and
Norris
,
M. A.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
234
242
.10.1115/1.2836462
12.
Bakre
,
S. V.
, and
Jangid
,
R. S.
,
2004
, “
Optimum Multiple Tuned Mass Dampers for Base Excited Damped Main System
,”
Int. J. Struct. Stability Dyn.
,
4
(
4
), pp.
527
542
.10.1142/S0219455404001367
13.
Bandivadekar
,
T. P.
, and
Jangid
,
R. S.
,
2013
, “
Optimization of Multiple Tuned Mass Dampers for Vibration Control of System Under External Excitation
,”
J. Vib. Control
,
19
(
12
), pp.
1854
1871
.10.1177/1077546312449849
14.
Greco
,
R.
,
Lucchini
,
A.
, and
Marano
,
G. C.
,
2015
, “
Robust Design of Tuned Mass Dampers Installed on Multi-Degree-of-Freedom Structures Subjected to Seismic Action
,”
Eng. Optim.
,
47
(
8
), pp.
1009
1030
.10.1080/0305215X.2014.941288
15.
Hoang
,
N.
, and
Warnitchai
,
P.
,
2005
, “
Design of Multiple Tuned Mass Dampers by Using a Numerical Optimizer
,”
Earthquake Eng. Struct. Dyn.
,
34
(
2
), pp.
125
144
.10.1002/eqe.413
16.
Jokic
,
M.
,
Stegic
,
M.
, and
Butkovic
,
M.
,
2011
, “
Reduced-Order Multiple Tuned Mass Damper Optimization: A Bounded Real Lemma for Descriptor Systems Approach
,”
J. Sound Vib.
,
330
(
22
), pp.
5259
5268
.10.1016/j.jsv.2011.06.005
17.
Jordanov
,
I. N.
, and
Cheshankov
,
B. I.
,
1988
, “
Optimal Design of Linear and Nonlinear Dynamic Vibration Absorbers
,”
J. Sound Vib.
,
123
(
1
), pp.
157
170
.10.1016/S0022-460X(88)80085-3
18.
Joshi
,
A. S.
, and
Jangid
,
R. S.
,
1997
, “
Optimum Parameters of Multiple Tuned Mass Dampers for Base-Excited Damped Systems
,”
J. Sound Vib.
,
202
(
5
), pp.
657
667
.10.1006/jsvi.1996.0859
19.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
,
2002
, “
Analytical Solutions to Hinf and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear System
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
284
295
.10.1115/1.1456458
20.
Bisegna
,
P.
, and
Caruso
,
G.
,
2012
, “
Closed-Form Formulas for the Optimal Pole-Based Design of Tuned Mass Dampers
,”
J. Sound Vib.
,
331
(
10
), pp.
2291
2314
.10.1016/j.jsv.2012.01.005
21.
Zilletti
,
M.
,
Elliott
,
S. J.
, and
Rustighi
,
E.
,
2012
, “
Optimization of Dynamic Vibration Absorbers to Minimize Kinetic Energy and Maximize Internal Power Dissipation
,”
J. Sound Vib.
,
331
(
18
), pp.
4093
4100
.10.1016/j.jsv.2012.04.023
22.
Bekdaş
,
G.
, and
Nigdeli
,
S. M.
,
2011
, “
Estimating Optimum Parameters of Tuned Mass Dampers Using Harmony Search
,”
Eng. Struct.
,
33
(
9
), pp.
2716
2723
.10.1016/j.engstruct.2011.05.024
23.
Farshidianfar
,
A.
, and
Soheili
,
S.
,
2013
, “
Optimization of TMD Parameters for Earthquake Vibrations of Tall Buildings Including Soil Structure Interaction
,”
Int. J. Optim. Civ. Eng.
,
3
(
3
), pp.
409
429
.
24.
Leung
,
A. Y. T.
, and
Zhang
,
H.
,
2009
, “
Particle Swarm Optimization of Tuned Mass Dampers
,”
Eng. Struct.
,
31
(
3
), pp.
715
728
.10.1016/j.engstruct.2008.11.017
25.
Mohebbi
,
M.
,
Shakeri
,
K.
,
Ghanbarpour
,
Y.
, and
Majzoub
,
H.
,
2013
, “
Designing Optimal Multiple Tuned Mass Dampers Using Genetic Algorithms (GAs) for Mitigating the Seismic Response of Structures
,”
J. Vib. Control
,
19
(
4
), pp.
605
625
.10.1177/1077546311434520
26.
Arfiadi
,
Y.
, and
Hadi
,
M. S.
,
2011
, “
Optimum Placement and Properties of Tuned Mass Dampers Using Hybrid Genetic Algorithms
,”
Int. J. Optim. Civ. Eng.
,
1
(
1
), pp.
167
187
.http://ijoce.iust.ac.ir/files/site1/user_files_5jkw45/admin-A-10-1-11-00f6db2.pdf
27.
Stăncioiu
,
D.
, and
Ouyang
,
H.
,
2012
, “
Structural Modification Formula and Iterative Design Method Using Multiple Tuned Mass Dampers for Structures Subjected to Moving Loads
,”
Mech. Syst. Signal Process.
,
28
, pp.
542
560
.10.1016/j.ymssp.2011.11.009
28.
Yuan
,
M.
,
Liu
,
K.
, and
Sadhu
,
A.
,
2018
, “
Simultaneous Vibration Suppression and Energy Harvesting With a Non-Traditional Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
,
29
(
8
), pp.
1748
1763
.10.1177/1045389X17754263
29.
Gonzalez-Buelga
,
A.
,
Clare
,
L. R.
,
Cammarano
,
A.
,
Neild
,
S. A.
,
Burrow
,
S. G.
, and
Inman
,
D. J.
,
2014
, “
An Optimized Tuned Mass Damper/Harvester Device
,”
Struct. Control Health Monit.
,
21
(
8
), pp.
1154
1169
.10.1002/stc.1639
30.
Zuo
,
L.
, and
Zhang
,
P. S.
,
2013
, “
Energy Harvesting, Ride, Comfort, and Road Handling of Regenerative Vehicle Suspensions
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011002
.10.1115/1.4007562
31.
Ali
,
S. F.
, and
Adhikari
,
S.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041004
.10.1115/1.4007967
32.
Tang
,
X.
, and
Zuo
,
L.
,
2012
, “
Simultaneous Energy Harvesting and Vibration Control of Structures With Tuned Mass Dampers
,”
J. Intell. Mater. Syst. Struct.
,
23
(
18
), pp.
2117
2127
.10.1177/1045389X12462644
33.
Zhu
,
S.
,
Shen
,
W.
, and
Xu
,
Y.
,
2012
, “
Linear Electromagnetic Devices for Vibration Damping and Energy Harvesting: Modeling and Testing
,”
Eng. Struct.
,
34
, pp.
198
212
.10.1016/j.engstruct.2011.09.024
34.
Secord
,
T. W.
,
Louwagie
,
T. R.
, and
Kopas
,
R. J.
,
2020
, “
Design of Discretely Tunable Resonant Actuators Using Additive Inertial Units
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
3
), p.
031009
.10.1115/1.4045562
You do not currently have access to this content.