Abstract

This paper presents two new time-domain feedback controllers that reject sinusoidal disturbances with known frequencies acting on an asymptotically stable linear time-invariant (LTI) system. The first controller is time-domain higher harmonic control (TD-HHC), which is effective for uncertain LTI systems. The second controller is time-domain adaptive higher harmonic control (TD-AHHC), which is effective for completely unknown LTI systems. TD-HHC requires an estimate of the control-to-performance transfer function evaluated at the disturbance frequencies. In contrast, TD-AHHC does not require any information regarding the LTI system. We analyze the stability and closed-loop performance of TD-HHC and TD-AHHC. For both TD-HHC and TD-AHHC, we show that the controller asymptotically rejects the disturbance. We present numerical simulations comparing TD-HHC and TD-AHHC with frequency-domain higher harmonic control (FD-HHC), which is an existing frequency-domain controller for rejection of sinusoidal disturbances. We also present results from acoustic disturbance rejection experiments, which demonstrate the practical effectiveness of both TD-HHC and TD-AHHC.

References

References
1.
Zhang
,
Y.
,
Li
,
M.
, and
Zhang
,
J.
,
2017
, “
Vibration Control for Rapid Attitude Stabilization of Spacecraft
,”
IEEE Trans. Aero. Electr. Sys.
,
53
(
3
), pp.
1308
1320
.10.1109/TAES.2017.2670798
2.
Chen
,
T.
, and
Wen
,
H.
,
2018
, “
Autonomous Assembly With Collision Avoidance of a Fleet of Flexible Spacecraft Based on Disturbance Observer
,”
Acta Astronaut.
,
147
, pp.
86
96
.10.1016/j.actaastro.2018.03.027
3.
Elliott
,
S. J.
,
Boucher
,
C. C.
, and
Nelson
,
P. A.
,
1992
, “
The Behavior of a Multiple Channel Active Control System
,”
IEEE Trans. Sig. Proc.
,
40
(
5
), pp.
1041
1052
.10.1109/78.134467
4.
Lu
,
L.
, and
Zhao
,
H.
,
2017
, “
Active Impulsive Noise Control Using Maximum Correntropy With Adaptive Kernel Size
,”
Mech. Sys. Sig. Proc.
,
87
, pp.
180
191
.10.1016/j.ymssp.2016.10.020
5.
Knospe
,
C. R.
,
Hope
,
R. W.
,
Tamer
,
S. M.
, and
Fedigan
,
S. J.
,
1996
, “
Robustness of Adaptive Unbalance Control of Rotors With Magnetic Bearings
,”
J. Vib. Contr.
,
2
(
1
), pp.
33
52
.10.1177/107754639600200103
6.
Zheng
,
Y.
,
Mo
,
N.
,
Zhou
,
Y.
, and
Shi
,
Z.
,
2019
, “
Unbalance Compensation and Automatic Balance of Active Magnetic Bearing Rotor System by Using Iterative Learning Control
,”
IEEE Access
,
7
, pp.
122613
122625
.10.1109/ACCESS.2019.2938222
7.
Friedmann
,
P. P.
, and
Millott
,
T. A.
,
1995
, “
Vibration Reduction in Rotorcraft Using Active Control: A Comparison of Various Approaches
,”
J. Guid. Contr. Dyn.
,
18
(
4
), pp.
664
673
.10.2514/3.21445
8.
Wang
,
P.
,
Korniienko
,
A.
,
Bombois
,
X.
,
Collet
,
M.
,
Scorletti
,
G.
,
Skow
,
E.
,
Wang
,
C.
, and
Colin
,
K.
,
2019
, “
Active Vibration Control in Specific Zones of Smart Structures
,”
Contr. Eng. Prac.
,
84
, pp.
305
322
.10.1016/j.conengprac.2018.12.005
9.
Xie
,
X.
,
Ren
,
M.
, and
Zhang
,
Z.
,
2020
, “
Investigation on an Adaptive Method for Tonal Vibration Suppression
,”
ASME J. Vib. Acous.
,
142
(
2
), p.
021002
.10.1115/1.4045454
10.
Chen
,
Y.
,
Moore
,
K. L.
,
Yu
,
J.
, and
Zhang
,
T.
,
2008
, “
Iterative Learning Control and Repetitive Control in Hard Disk Drive Industry—A Tutorial
,”
Int. J. Adapt. Contr. Sig. Proc.
,
22
(
4
), pp.
325
343
.10.1002/acs.1003
11.
Patt
,
D.
,
Liu
,
L.
,
Chandrasekar
,
J.
,
Bernstein
,
D. S.
, and
Friedmann
,
P. P.
,
2005
, “
Higher-Harmonic-Control Algorithm for Helicopter Vibration Reduction Revisited
,”
J. Guid. Contr. Dyn.
,
28
(
5
), pp.
918
930
.10.2514/1.9345
12.
Welsh
,
W. A.
,
2018
, “
Helicopter Vibration Reduction
,”
Morphing Wing Technologies
,
Elsevier
,
Oxford, UK
, pp.
865
892
.
13.
Davison
,
E. J.
,
1976
, “
The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems
,”
IEEE Trans. Autom. Contr.
,
21
(
1
), pp.
25
34
.10.1109/TAC.1976.1101137
14.
Francis
,
B. A.
,
Sebakhy
,
A.
, and
Wonham
,
W. M.
,
1974
, “
Synthesis of Multivariable Regulators: The Internal Model Principle
,”
J. Appl. Math. Optim.
,
1
(
1
), pp.
64
86
.10.1007/BF01449024
15.
Hoagg
,
J. B.
,
Santillo
,
M. A.
, and
Bernstein
,
D. S.
,
2008
, “
Internal Model Control in the Shift and Delta Domains
,”
IEEE Trans. Autom. Contr.
,
53
(
4
), pp.
1066
1072
.10.1109/TAC.2008.921526
16.
Bodson
,
M.
,
Sacks
,
A.
, and
Khosla
,
P.
,
1994
, “
Harmonic Generation in Adaptive Feedforward Cancellation Schemes
,”
IEEE Trans. Autom. Contr.
,
39
(
9
), pp.
1939
1944
.10.1109/9.317130
17.
Messner
,
W.
, and
Bodson
,
M.
,
1995
, “
Design of Adaptive Feedforward Algorithms Using Internal Model Equivalence
,”
Int. J. Adapt. Contr. Sig. Proc.
,
9
(
2
), pp.
199
212
.10.1002/acs.4480090207
18.
Bayard
,
D. S.
,
2000
, “
A General Theory of Linear Time-Invariant Adaptive Feedforward Systems With Harmonic Regressors
,”
IEEE Trans. Autom. Contr.
,
45
(
11
), pp.
1983
1996
.10.1109/9.887622
19.
Marino
,
R.
, and
Tomei
,
P.
,
2015
, “
Output Regulation for Unknown Stable Linear Systems
,”
IEEE Trans. Autom. Contr.
,
60
(
8
), pp.
2213
2218
.10.1109/TAC.2014.2368234
20.
Landau
,
I. D.
,
Airimitoaie
,
T.-B.
,
Castellanos-Silva
,
A.
, and
Constantinescu
,
A.
,
2017
, “
Adaptive Feedforward Compensation of Disturbances
,”
Adaptive and Robust Active Vibration Control
,
Springer
,
Cham, Switzerland
, pp.
311
349
.
21.
Yabui
,
S.
, and
Inoue
,
T.
,
2019
, “
Development of Adaptive Feed-Forward Cancellation With Frequency Estimation Algorithm for Compensation of Periodic Disturbance at Arbitrary Frequency
,”
ASME J. Dyn. Sys. Meas. Contr.
,
141
(
12
), p.
121014
.10.1115/1.4044719
22.
Wang
,
Y.
,
Pin
,
G.
,
Serrani
,
A.
, and
Parisini
,
T.
,
2019
, “
Removing SPR-Like Conditions in Adaptive Feedforward Control of Uncertain Systems
,”
IEEE Trans. Autom. Contr.
,
65
(
6
), pp.
2309
2324
.10.1109/TAC.2019.2934394
23.
Hoagg
,
J. B.
,
Santillo
,
M. A.
, and
Bernstein
,
D. S.
,
2008
, “
Discrete-Time Adaptive Command Following and Disturbance Rejection With Unknown Exogenous Dynamics
,”
IEEE Trans. Autom. Contr.
,
53
(
4
), pp.
912
928
.10.1109/TAC.2008.920234
24.
Hoagg
,
J. B.
, and
Bernstein
,
D. S.
,
2012
, “
Retrospective Cost Model Reference Adaptive Control for Nonminimum-Phase Systems
,”
J. Guid. Contr. Dyn.
,
35
(
6
), pp.
1767
1786
.10.2514/1.57001
25.
Bobtsov
,
A.
,
Pyrkin
,
A.
, and
Kolyubin
,
S.
,
2014
, “
Simple Output Feedback Adaptive Control Based on Passification Principle
,”
Int. J. Adapt. Contr. Sig. Proc.
,
28
(
7–8
), pp.
620
632
.10.1002/acs.2402
26.
Wei
,
X.
,
Dong
,
L.
,
Zhang
,
H.
,
Hu
,
X.
, and
Han
,
J.
,
2019
, “
Adaptive Disturbance Observer-Based Control for Stochastic Systems With Multiple Heterogeneous Disturbances
,”
Int. J. Robust Nonlinear Contr.
,
29
(
16
), pp.
5533
5549
.10.1002/rnc.4683
27.
Pan
,
H.
, and
Sun
,
W.
,
2019
, “
Nonlinear Output Feedback Finite-Time Control for Vehicle Active Suspension Systems
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2073
2082
.10.1109/TII.2018.2866518
28.
Lozada-Castillo
,
N.
,
Luviano-Juárez
,
A.
, and
Chairez
,
I.
,
2019
, “
Robust Control of Uncertain Feedback Linearizable Systems Based on Adaptive Disturbance Estimation
,”
ISA Trans.
,
87
, pp.
1
9
.10.1016/j.isatra.2018.10.003
29.
Pearson
,
J. T.
,
Goodall
,
R. M.
, and
Lyndon
,
I.
,
1994
, “
Active Control of Helicopter Vibration
,”
Comput. Contr. Eng. J.
,
5
(
6
), pp.
277
284
.10.1049/cce:19940608
30.
Kamaldar
,
M.
, and
Hoagg
,
J. B.
,
2017
, “
Adaptive Harmonic Steady-State Control for Rejection of Sinusoidal Disturbances Acting on a Completely Unknown System
,”
Int. J. Adapt. Contr. Sig. Proc.
,
31
(
9
), pp.
1308
1326
.10.1002/acs.2766
31.
Chandrasekar
,
J.
,
Liu
,
L.
,
Patt
,
D.
,
Friedmann
,
P. P.
, and
Bernstein
,
D. S.
,
2006
, “
Adaptive Harmonic Steady-State Control for Disturbance Rejection
,”
IEEE Trans. Contr. Sys. Tech.
,
14
(
6
), pp.
993
1007
.10.1109/TCST.2006.880185
32.
Pigg
,
S.
, and
Bodson
,
M.
,
2010
, “
Adaptive Algorithms for the Rejection of Sinusoidal Disturbances Acting on Unknown Plants
,”
IEEE Trans. Contr. Sys. Tech.
,
18
(
4
), pp.
822
836
.10.1109/TCST.2009.2029237
33.
Kamaldar
,
M.
, and
Hoagg
,
J. B.
,
2020
, “
Adaptive Harmonic Control for Rejection of Sinusoidal Disturbances Acting on an Unknown System
,”
IEEE Trans. Contr. Sys. Tech.
,
28
(
2
), pp.
277
290
.10.1109/TCST.2018.2873283
34.
Bernstein
,
D. S.
,
2018
,
Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas-Revised and Expanded Edition
,
Princeton University Press
,
Princeton, NJ
.
35.
Hong
,
J.
,
Ackers
,
J. C.
,
Venugopal
,
R.
,
Lee
,
M. N.
,
Sparks
,
A. G.
,
Washabaugh
,
P. D.
, and
Bernstein
,
D. S.
,
1996
, “
Modeling, Identification, and Feedback Control of Noise in an Acoustic Duct
,”
IEEE Trans. Contr. Sys. Tech.
,
4
, pp.
283
291
.10.1109/87.491202
36.
Kamaldar
,
M.
, and
Hoagg
,
J. B.
,
2017
, “
Adaptive Control for Rejection of a Sinusoidal Disturbance With Unknown Frequency Acting on an Unknown System
,”
Proceedings of IEEE American Control Conference
,
Seattle, WA
, May 24–26, pp.
5696
5701
.10.23919/ACC.2017.7963842
You do not currently have access to this content.