Abstract

This paper reports a study on the static and dynamic behavior of pneumatic actuation systems, resulting in a comprehensive view of the influence of the system parameters on the energy efficiency and dynamic performance. The operating point approach based on the steady-state analysis of a pneumatic actuation system is used for developing analytical expressions to describe the relationship between the piston diameter and the system performance, including displacement time, stroke end velocity, and energy efficiency. The validity of the proposed equations is demonstrated by comparison with results from a test rig. Sensitivity analysis using a nonlinear dynamic simulation model indicated that a specific operating region exists, where good energy efficiency and the maximum dynamic performance are achieved. Moreover, the results show that an oversized system becomes more inefficient in both energetic and dynamic aspects. The results obtained provide a very consistent foundation for developing a method for pneumatic system sizing.

References

References
1.
Hepke
,
J.
, and
Weber
,
J.
,
2013
, “
Energy Saving Measures on Pneumatic Drive Systems
,”
Proceedings 13th Scandinavian International Conference on Fluid Power
,
Linköping, Sweden
, June 3–5, pp.
475
483
.https://www.optiy.eu/download/EnergySaving.pdf
2.
Gibson
,
T. J.
, and
Barth
,
E. J.
,
2019
, “
Design, Model, and Experimental Validation of a Pneumatic Boost Converter
,”
ASME J. Dyn. Sys., Meas., Control.
,
141
(
1
), p.
011004
.10.1115/1.4041062
3.
Harris
,
P.
,
Nolan
,
S.
, and
O'Donnell
,
G. E.
,
2014
, “
Energy Optimisation of Pneumatic Actuator Systems in Manufacturing
,”
J. Cleaner Prod.
,
72
, pp.
35
45
.10.1016/j.jclepro.2014.03.011
4.
Merkelbach
,
S.
, and
Murrenhoff
,
H.
,
2015
, “
Exergy Based Analysis of Pneumatic Air Saving Measures
,”
ASME Paper No. FPMC2015-9513
.10.1115/FPMC2015-9513
5.
Padovani
,
D.
, and
Barth
,
E. J.
,
2018
, “
Exploiting Valve Timing for Pneumatic Energy Savings
,”
ASME Paper No. FPMC2018-8871
.10.1115/FPMC2018-8871
6.
Doll
,
M.
,
Neumann
,
R.
, and
Sawodny
,
O.
,
2011
, “
Energy Efficient Use of Compressed Air in Pneumatic Drive Systems for Motion Tasks
,”
Proceedings of International Conference on Fluid Power and Mechatronics
,
Beijing, China
, Aug. 17–20, pp.
340
345
.10.1109/FPM.2011.6045785
7.
Shen
,
X.
, and
Goldfarb
,
M.
,
2007
, “
Energy Saving in Pneumatic Servo Control Utilizing Interchamber Cross-Flow
,”
ASME J. Dyn. Sys., Meas., Control.
,
129
(
3
), pp.
303
310
.10.1115/1.2718244
8.
Endler
,
L.
,
De Negri
,
V. J.
, and
Castelan
,
E. B.
,
2015
, “
Compressed Air Saving in Symmetrical and Asymmetrical Pneumatic Positioning Systems
,”
Proc. Inst. Mech. Eng., Part I
,
229
(
10
), pp.
957
969
.10.1177/0959651815597819
9.
Bollmann
,
A.
,
1997
,
Fundaments of Pneutronic Industrial Automation - Design of Binary Electro-Pneumatic Commands (in Portuguese)
,
ABHP
,
São Paulo, Brazil
.
10.
Bimba
,
2011
,
Pneumatic Application & Reference Handbook
,
Bimba Manufacturing Company
,
Monee, IL
.
11.
Festo
,
2020
, “
Pneumatic Sizing
,” Festo Corporation, accessed Sept. 17, 2020, https://www.festo.com/eap/en-us_us/PneumaticSizing/
12.
Emerson
,
2018
, “
Numasing
,”
ASCO Valve, Inc
.,
Florham Park, NJ
, accessed Aug. 26, 2020, https://www.asco.com/en-us/Pages/calculators-numasizing.aspx
13.
PHD
,
2020
, “
Solutions for Industrial Automation
,”
PHD Inc.
,
Fort Wayne, IN
, accessed July 15, 2020, https://www.phdinc.com/etools/
14.
Rakova
,
E.
,
Hepke
,
J.
, and
Weber
,
J.
,
2016
, “
EXonomy Analysis for the Inter-Domain Comparison of Electromechanical and Pneumatic Drives
,”
Proceedings of 10th International Fluid Power Conference
,
Dresden, Germany
, Mar. 8–10, 2016, pp.
117
136
.https://tud.qucosa.de/api/qucosa%3A29385/attachment/ATT-0/?L=1
15.
Doll
,
M.
,
Neumann
,
R.
, and
Sawodny
,
O.
,
2015
, “
Dimensioning of Pneumatic Cylinders for Motion Tasks
,”
Int. J. Fluid Power
,
16
(
1
), pp.
1
24
.10.1080/14399776.2015.1012437
16.
Heung
,
Y. S.
, and
Jae
,
W. L.
,
1998
, “
An Expert System for Pneumatic Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
12
(
1
), pp.
3
11
.10.1017/S0890060498121121
17.
Rakova
,
E.
, and
Weber
,
J.
,
2016
, “
Exonomy Analysis for the Selection of the Most Cost-Effective Pneumatic Drive Solution
,”
ASME Paper No. FPNI2016-1518
.10.1115/FPNI2016-1518
18.
Sanville
,
F. E.
,
1971
, “
A New Method of Specifying the Flow Capacity of Pneumatic Fluid Power Valves
,”
Proceedings of Second Fluid Power Symposium
,
Guildford, UK
, Jan. 4–7, pp.
37
47
.
19.
Beater
,
P.
,
2007
,
Pneumatic Drives: System Design, Modelling and Control
,
Springer
,
Berlin, Germany
.
20.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2014
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill Education
,
New York
.
21.
Canudas-de-Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
22.
Hené
,
M. D.
,
Mendonza
,
Y. E. A.
,
Oliveira
,
L. G. D.
, and
De Negri
,
V. J.
,
2010
, “
Determination of the Operational Point for the Pneumatic System Sizing
,”
Proceedings of Seventh International Fluid Power Conference
, Aachen, Germany, Mar. 22–24, pp.
343
354
.
23.
Oliveira
,
L. G.
,
2009
, “Determination of the Operating Points for Pneumatic Cylinder-Valve Set,” M.S. thesis,
Federal University of Santa Catarina
,
Florianópolis, Brazil
(In Portuguese).
24.
Belforte
,
G.
,
D'Alfio
,
N.
, and
Raparelli
,
T.
,
1989
, “
Experimental Analysis of Friction Forces in Pneumatic Cylinders
,”
J. Fluid Control
,
20
(
1
), pp.
42
60
.https://www.semanticscholar.org/paper/Experimental-analysis-of-friction-forces-in-Belforte-D%27Alfio/525f6f3d82d01dea64f5c2bca63c452a24790144
25.
Belforte
,
G.
,
Mattiazzo
,
G.
,
Mauro
,
S. R.
, and
Tokashiki
,
L.
,
2003
, “
Measurement of Friction Force in Pneumatic Cylinders
,”
Tribotest J.
,
10
(
1
), pp.
33
48
.10.1002/tt.3020100104
26.
Virvalo
,
T.
,
1993
, “
Modeling Pneumatic Position Servo Realized With Commercial Components
,”
Proceedings of Second JHPS International Symposium on Fluid Power
,
Tokyo, Japan
, Sept. 6–9, pp.
577
582
.10.5739/isfp.1993.577
27.
Vigolo
,
V.
,
2018
, “
Theoretical-Experimental Study to Aid the Sizing of Pneumatic Actuation Systems
,” M.S. thesis,
Federal University of Santa Catarina
,
Florianópolis, Brazil
(In Portuguese).
28.
Rakova
,
E.
,
Hepke
,
J.
, and
Weber
,
J.
,
2014
, “
Comparison of Methods for the Investigation on the Energetic Behaviour of Pneumatic Drives
,”
Proceedings of 9th International Fluid Power Conference
,
Aachen, Germany
, Mar. 24–26, pp.
116
127
.https://www.researchgate.net/publication/262404933_Comparison_of_Methods_for_the_Investigation_on_the_Energetic_Behaviour_of_Pneumatic_Drives
29.
Rakova
,
E.
, and
Weber
,
J.
,
2015
, “
Process Simulation of Energy Behaviour of Pneumatic Drives
,”
Procedia Eng.
,
106
, pp.
149
157
.10.1016/j.proeng.2015.06.018
30.
Merkelbach
,
S.
,
Murrenhoff
,
I. H.
,
Fey
,
I. M.
, and
Eßer
,
B.
,
2016
, “
Pneumatic or Electromechanical Drives–a Comparison Regarding Their Exergy Efficiency
,”
Proceedings of 10th International Fluid Power Conference
,
Dresden, Germany
, Mar. 8–10, pp.
103
116
.https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-200414
You do not currently have access to this content.