Abstract

This paper presents a new artificial neural network (ANN)-based system model that concatenates an optimized artificial neural network (OANN) and a neural network compensator (NNC) in series to capture temporally varying system dynamics caused by slow-paced degradation/anomaly. The OANN comprises a complex, fully connected multilayer perceptron, trained offline using nominal, anomaly free data, and remains unchanged during online operation. Its hyperparameters are selected using genetic algorithm-based meta-optimization. The compact NNC is updated continuously online using collected sensor data to capture the variations in system dynamics, rectify the OANN prediction, and eventually minimize the discrepancy between the OANN-predicted and actual response. The combined OANN–NNC model then reconfigures the model predictive control (MPC) online to alleviate disturbances. Through numerical simulation using an unmanned quadrotor as an example, the proposed model demonstrates salient capabilities to mitigate anomalies introduced to the system while maintaining control performance. We compare the OANN–NNC with other online modeling techniques (adaptive ANN and multinetwork model), showing it outperforms them in reference tracking of altitude control by at least 0.5 m and yaw control by 1 deg. Moreover, its robustness is confirmed by the MPC consistency regardless of anomaly presence, eliminating the need for additional model management during online operation.

References

References
1.
Billings
,
S. A.
,
2013
,
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains
,
Wiley
,
Chichester, UK
.
2.
Han
,
H. G.
,
Guo
,
Y. N.
, and
Qiao
,
J. F.
,
2018
, “
Nonlinear System Modeling Using a Self-Organizing Recurrent Radial Basis Function Neural Network
,”
Appl. Soft Comput.
,
71
, pp.
1105
1116
.10.1016/j.asoc.2017.10.030
3.
Lin
,
C. M.
,
Le
,
T. L.
, and
Huynh
,
T. T.
,
2018
, “
Self-Evolving Function-Link Interval Type-2 Fuzzy Neural Network for Nonlinear System Identification and Control
,”
Neurocomputing
,
275
, pp.
2239
2250
.10.1016/j.neucom.2017.11.009
4.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2018
, “
Multistep Neural Networks for Data-Driven Discovery of Nonlinear Dynamical Systems
,” arXiv preprint arXiv:1801.01236.
5.
Solmaz
,
Ö.
,
Gürbüz
,
H.
, and
Karacor
,
M.
,
2020
, “
Comparison of Artificial Neural Network and Fuzzy Logic Approaches for the Prediction of in-Cylinder Pressure in a Spark Ignition Engine
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
9
), p. 091005.10.1115/1.4047014
6.
Patan
,
K.
, and
Korbicz
,
J.
,
2012
, “
Nonlinear Model Predictive Control of a Boiler Unit: A Fault Tolerant Control Study
,”
Int. J. Appl. Math. Comput. Sci.
,
22
(
1
), pp.
225
237
.10.2478/v10006-012-0017-6
7.
Cheng
,
L.
,
Liu
,
W.
,
Hou
,
Z. G.
,
Yu
,
J.
, and
Tan
,
M.
,
2015
, “
Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators
,”
IEEE Trans. Ind. Electron.
,
62
(
12
), pp.
7717
7727
.10.1109/TIE.2015.2455026
8.
Han
,
H. G.
,
Zhang
,
L.
,
Hou
,
Y.
, and
Qiao
,
J. F.
,
2016
, “
Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network
,”
IEEE Trans Neural Netw. Learn. Syst.
,
27
(
2
), pp.
402
415
.10.1109/TNNLS.2015.2465174
9.
Wang
,
T.
,
Gao
,
H.
, and
Qiu
,
J.
,
2016
, “
A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate Networked Industrial Process Control
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
27
(
2
), pp.
416
425
.10.1109/TNNLS.2015.2411671
10.
Negri
,
G. H.
,
Cavalca
,
M. S.
,
de Oliveira
,
J.
,
Araújo
,
C. J.
, and
Celiberto
,
L. A.
,
2017
, “
Evaluation of Nonlinear Model-Based Predictive Control Approaches Using Derivative-Free Optimization and FCC Neural Networks
,”
J. Control, Autom. Electr. Syst.
,
28
(
5
), pp.
623
634
.10.1007/s40313-017-0327-x
11.
Shin
,
J. H.
,
Jun
,
H. B.
, and
Kim
,
J. G.
,
2018
, “
Dynamic Control of Intelligent Parking Guidance Using Neural Network Predictive Control
,”
Comput. Ind. Eng.
,
120
, pp.
15
30
.10.1016/j.cie.2018.04.023
12.
Yan
,
Z.
, and
Wang
,
J.
,
2014
, “
Robust Model Predictive Control of Nonlinear Systems With Unmodeled Dynamics and Bounded Uncertainties Based on Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
25
(
3
), pp.
457
469
.10.1109/TNNLS.2013.2275948
13.
Morari
,
M.
, and
Maeder
,
U.
,
2012
, “
Nonlinear Offset-Free Model Predictive Control
,”
Automatica
,
48
(
9
), pp.
2059
2067
.10.1016/j.automatica.2012.06.038
14.
Tatjewski
,
P.
,
2014
, “
Disturbance Modeling and State Estimation for Offset-Free Predictive Control With State-Space Process Models
,”
Int. J. Appl. Math. Comput. Sci.
,
24
(
2
), pp.
313
323
.10.2478/amcs-2014-0023
15.
Sena
,
H. J.
,
Ramos
,
V. S.
,
Silva
,
F. V.
, and
Fileti
,
A. M. F.
,
2017
, “
Adaptive Offset Remover Based on Kalman Filter Integrated to a Model Predictive Controller
,”
Chem. Eng.
,
57
, pp.
1093
1098
.
16.
Alexandridis
,
A.
, and
Sarimveis
,
H.
,
2005
, “
Nonlinear Adaptive Model Predictive Control Based on Self‐Correcting Neural Network Models
,”
AIChE J.
,
51
(
9
), pp.
2495
2506
.10.1002/aic.10505
17.
Kusiak
,
A.
, and
Xu
,
G.
,
2012
, “
Modeling and Optimization of HVAC Systems Using a Dynamic Neural Network
,”
Energy
,
42
(
1
), pp.
241
250
.10.1016/j.energy.2012.03.063
18.
Vatankhah
,
B.
, and
Farrokhi
,
M.
,
2019
, “
Nonlinear Adaptive Model Predictive Control of Constrained Systems With Offset‐Free Tracking Behavior
,”
Asian J. Control
,
21
(
5
), pp.
2232
2244
.10.1002/asjc.1655
19.
Part
,
J. L.
, and
Lemon
,
O.
,
2016
, “
Incremental on-Line Learning of Object Classes Using a Combination of Self-Organizing Incremental Neural Networks and Deep Convolutional Neural Networks
,”
Workshop on Bio-Inspired Social Robot Learning in Home Scenarios (IROS)
, Daejeon, South Korea, Oct, pp.1–6.
20.
Mici
,
L.
,
Parisi
,
G. I.
, and
Wermter
,
S.
,
2018
, “
An Incremental Self-Organizing Architecture for Sensorimotor Learning and Prediction
,”
IEEE Trans. Cogn. Dev. Syst.
,
10
(
4
), pp.
918
928
.10.1109/TCDS.2018.2832844
21.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
(
Feb
), pp.
281
305
. https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
22.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Advances in Neural Information Processing Systems
, Stateline, NV, pp.
2951
2959
.
23.
Bergstra
,
J. S.
,
Bardenet
,
R.
,
Bengio
,
Y.
, and
Kégl
,
B.
,
2011
, “
Algorithms for Hyper-Parameter Optimization
,”
Advances in Neural Information Processing Systems
, Granada, Spain, pp.
2546
2554
.
24.
Zoph
,
B.
, and
Le
,
Q. V.
,
2016
, “
Neural Architecture Search With Reinforcement Learning
,” arXiv preprint arXiv:1611.01578.
25.
Zoph
,
B.
,
Vasudevan
,
V.
,
Shlens
,
J.
, and
Le
,
Q. V.
,
2018
, “
Learning Transferable Architectures for Scalable Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Salt Lake City, UT, pp.
8697
8710
.
26.
Leung
,
F. H. F.
,
Lam
,
H. K.
,
Ling
,
S. H.
, and
Tam
,
P. K. S.
,
2003
, “
Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm
,”
IEEE Trans. Neural Netw.
,
14
(
1
), pp.
79
88
.10.1109/TNN.2002.804317
27.
Curteanu
,
S.
, and
Cartwright
,
H.
,
2011
, “
Neural Networks Applied in Chemistry. I. Determination of the Optimal Topology of Multilayer Perceptron Neural Networks
,”
J. Chemomet.
,
25
(
10
), pp.
527
549
.10.1002/cem.1401
28.
Zhang
,
R.
,
Tao
,
J.
, and
Gao
,
F.
,
2016
, “
A New Approach of Takagi–Sugeno Fuzzy Modeling Using an Improved Genetic Algorithm Optimization for Oxygen Content in a Coke Furnace
,”
Ind. Eng. Chem. Res.
,
55
(
22
), pp.
6465
6474
.10.1021/acs.iecr.6b01364
29.
Zhang
,
R.
, and
Tao
,
J.
,
2017
, “
Data-Driven Modeling Using Improved Multi-Objective Optimization Based Neural Network for Coke Furnace System
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
3147
3155
.10.1109/TIE.2016.2645498
30.
Real
,
E.
,
Aggarwal
,
A.
,
Huang
,
Y.
, and
Le
,
Q. V.
,
2019
, “
Regularized Evolution for Image Classifier Architecture Search
,”
Proceedings of the AAAI Conference on Artificial Intelligence
, Vol.
33
, Honolulu, HI, pp.
4780
4789
.
31.
Mesnil
,
G.
,
Dauphin
,
Y.
,
Glorot
,
X.
,
Rifai
,
S.
,
Bengio
,
Y.
,
Goodfellow
,
I.
, Lavoie, E., Muller, X., Desjardins, G., Warde-Farley, D., Vincent, P., Courville, A., and Bergstra, J.,
2011
, “
Unsupervised and Transfer Learning Challenge: A Deep Learning Approach
,”
Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop
, Vol.
27
, Bellevue, WA, pp.
97
111
.
32.
Hedjar
,
R.
,
2013
, “
Adaptive Neural Network Model Predictive Control
,”
Int. J. Innovat. Comput., Inf. Control
,
9
(
3
), pp.
1245
1257
.
33.
Hong
,
S. H.
,
Cornelius
,
J.
,
Wang
,
Y.
, and
Pant
,
K.
,
2019
, “
Fault Compensation by Online Updating of Genetic Algorithm-Selected Neural Network Model for Model Predictive Control
,”
SN Appl. Sci.
,
1
(
11
), p.
1488
.10.1007/s42452-019-1526-9
34.
Chen
,
S.
, and
Billings
,
S. A.
,
1989
, “
Representations of Non-Linear Systems: The NARMAX Model
,”
Int. J. Control
,
49
(
3
), pp.
1013
1032
.10.1080/00207178908559683
35.
Akpan
,
V. A.
, and
Hassapis
,
G. D.
,
2011
, “
Nonlinear Model Identification and Adaptive Model Predictive Control Using Neural Networks
,”
ISA Trans.
,
50
(
2
), pp.
177
194
.10.1016/j.isatra.2010.12.007
36.
Pan
,
Y.
, and
Wang
,
J.
,
2012
, “
Model Predictive Control of Unknown Nonlinear Dynamical Systems Based on Recurrent Neural Networks
,”
IEEE Trans. Ind. Electron.
,
59
(
8
), pp.
3089
3101
.10.1109/TIE.2011.2169636
37.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
.10.1007/BF00175354
38.
Patan
,
K.
,
2015
, “
Neural Network-Based Model Predictive Control: Fault Tolerance and Stability
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
1147
1155
.10.1109/TCST.2014.2354981
39.
Ma
,
D.
,
Xia
,
Y.
,
Li
,
T.
, and
Chang
,
K.
,
2016
, “
Active Disturbance Rejection and Predictive Control Strategy for a Quadrotor Helicopter
,”
IET Control Theory Appl.
,
10
(
17
), pp.
2213
2222
.10.1049/iet-cta.2016.0125
40.
Jiajin
,
L.
,
Rui
,
L.
,
Yingjing
,
S.
, and
Jianxiao
,
Z.
,
2017
, “
Design of Attitude Controller Using Explicit Model Predictive Control for an Unmanned Quadrotor Helicopter
,” Chinese Automation Congress (
CAC
), Jinan, China, Oct. 20–22, pp.
2853
2857
.10.1109/CAC.2017.8243262
41.
Kuyumcu
,
A.
, and
Bayezit
,
I.
,
2017
, “
Augmented Model Predictive Control of Unmanned Quadrotor Vehicle
,” 11th Asian Control Conference (
ASCC
), Gold Coast, Australia, Dec. 17–20, pp.
1626
1631
.10.1109/ASCC.2017.8287417
42.
Cheng
,
H.
, and
Yang
,
Y.
,
2017
, “
Model Predictive Control and PID for Path Following of an Unmanned Quadrotor Helicopter
,” 12th IEEE Conference on Industrial Electronics and Applications (
ICIEA
), Siem Reap, Cambodia, June 18–20, pp.
768
773
.10.1109/ICIEA.2017.8282943
43.
Zhang
,
B.
,
Sun
,
X.
,
Liu
,
S.
, and
Deng
,
X.
,
2019
, “
Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight
,”
Int. J. Aerosp. Eng.
,
2019
, pp.
1
18
.10.1155/2019/7272387
44.
Bouabdallah
,
S.
,
2007
, “
Design and Control of Quadrotors With Application to Autonomous Flying
,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.
45.
ElKholy
,
H. M.
,
2014
, “
Dynamic Modeling and Control of a Quadrotor Using Linear and Nonlinear Approaches
,” M.S. thesis, American University in Cairo, AUC DAR.
46.
Puttige
,
V. R.
, and
Anavatti
,
S. G.
,
2008
, “
Real-Time System Identification of Unmanned Aerial Vehicles: A Multi-Network Approach
,”
JCP
,
3
(
7
), pp.
31
38
.10.4304/jcp.3.7.31-38
You do not currently have access to this content.