Abstract

This paper presents and experimentally evaluates a nested combined plant and controller optimization (co-design) strategy that is applicable to complex systems that require extensive simulations or experiments to evaluate performance. The proposed implementation leverages principles from Gaussian process (GP) modeling to simultaneously characterize performance and uncertainty over the design space within each loop of the co-design framework. Specifically, the outer loop uses a GP model and batch Bayesian optimization to generate a batch of candidate plant designs. The inner loop utilizes recursive GP modeling and a statistically driven adaptation procedure to optimize control parameters for each candidate plant design in real-time, during each experiment. The characterizations of uncertainty made available through the GP models are used to reduce both the plant and control parameter design space as the process proceeds, and the optimization process is terminated once sufficient design space reduction has been achieved. The process is validated in this work on a lab-scale experimental platform for characterizing the flight dynamics and control of an airborne wind energy (AWE) system. The proposed co-design process converges to a design space that is less than 8% of the original design space and results in more than a 50% increase in performance.

References

References
1.
Fathy
,
H. K.
,
Bortoff
,
S.
,
Copeland
,
S.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2002
, “
Nested Optimization of an Elevator and Its Gain-Scheduled LQG Controller
,”
ASME
Paper No. IMECE2002-39273.10.1115/IMECE2002-39273
2.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
Proceedings of the American Control Conference
,
Denver, CO
, June 4–6, pp.
3375
3380
.10.1109/ACC.2003.1244053
3.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2003
, “
Integrated Plant, Observer, and Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
ASME
Paper No. IMECE2003-42014.10.1115/IMECE2003-42014
4.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.10.1115/1.4027335
5.
Alexander
,
M. J.
,
Allison
,
J. T.
, and
Papalambros
,
P. Y.
,
2011
, “
Decomposition-Based Design Optimization of Electric Vehicle Powertrains Using Proper Orthogonal Decomposition
,”
Int. J. Powertrains
,
1
(
1
), pp.
72
92
.10.1504/IJPT.2011.041910
6.
Kamadan
,
A.
,
Kiziltas
,
G.
, and
Patoglu
,
V.
,
2017
, “
Co-Design Strategies for Optimal Variable Stiffness Actuation
,”
IEEE/ASME Trans. Mechatronics
,
22
(
6
), pp.
2768
2779
.10.1109/TMECH.2017.2765085
7.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2017
, “
Unrestricted Wind Farm Layout Design With Optimal Control Considerations
,”
ASME
Paper No. DETC2017-67480.10.1115/DETC2017-67480
8.
Chilan
,
C. M.
,
Herber
,
D. R.
,
Nakka
,
Y. K.
,
Chung
,
S.-J.
,
Allison
,
J. T.
,
Aldrich
,
J. B.
, and
Alvarez-Salazar
,
O. S.
,
2017
, “
Co-Design of Strain-Actuated Solar Arrays for Spacecraft Precision Pointing and Jitter Reduction
,”
AIAA J.
,
55
(
9
), pp.
3180
3195
.10.2514/1.J055748
9.
Garcia-Sanz
,
M.
,
2019
, “
Control Co-Design: An Engineering Game Changer
,”
Adv. Control Appl.
,
1
(
1
), p.
e18
.10.1002/adc2.18
10.
Peters
,
D.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A.
,
2013
, “
Control Proxy Functions for Sequential Design and Control Optimization
,”
Mechatronics
,
23
(
4
), pp.
409
418
.10.1016/j.mechatronics.2013.03.003
11.
Reyer
,
J.
, and
Papalambros
,
P.
,
1999
, “
Optimal Design and Control of an Electric DC Motor
,”
ASME
Paper No. DAC-8599
. 10.1115/DAC-8599
12.
Wang
,
Y.-S.
, and
Wang
,
Y.
,
2015
, “
A Gradient-Based Approach for Optimal Plant Controller Co-Design
,” Proceedings of American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
3249
3254
.10.1109/ACC.2015.7171833
13.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2017
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Controller Design Problems
,”
ASME
Paper No. DETC2017-67668. 10.1115/DETC2017-67668
14.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2016
, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
15
27
.10.1007/s00158-015-1308-y
15.
Maraniello
,
S.
, and
Palacios
,
R.
,
2016
, “
Optimal Vibration Control and Co-Design of Very Flexible Actuated Structures
,”
J. Sound Vib.
,
377
, pp.
1
21
.10.1016/j.jsv.2016.05.018
16.
Deodhar
,
N.
,
Deese
,
J.
, and
Vermillion
,
C.
,
2018
, “
Experimentally Infused Plant and Controller Optimization Using Iterative Design of ExperimentsTheoretical Framework and Airborne Wind Energy Case Study
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
1
), p.
011004
.10.1115/1.4037014
17.
Deese
,
J.
,
Deodhar
,
N.
, and
Vermillion
,
C.
,
2017
, “
Nested Plant/Controller Co-Design Using G-Optimal Design and Extremum Seeking: Theoretical Framework and Application to an Airborne Wind Energy System
,”
Proceedings of World Congress of the International Federation of Automatic Control
,
Toulouse, FR
, July 9–14, pp.
11965
11971
.10.1016/j.ifacol.2017.08.1182
18.
Deese
,
J.
, and
Vermillion
,
C.
,
2018
, “
Nested Plant/Controller Codesign Using G-Optimal Design and Continuous Time Adaptation Laws: Theoretical Framework and Application to an Airborne Wind Energy System
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
12
), p.
08
.10.1115/1.4040759
19.
Baheri
,
A.
, and
Vermillion
,
C.
,
2019
, “
Combined Plant and Controller Design Using Batch Bayesian Optimization: A Case Study in Airborne Wind Energy Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
9
), p.
091013
.10.1115/1.4043224
20.
Deese
,
J.
, and
Vermillion
,
C.
,
2019
, “
Recursive Gaussian Process-Based Adaptive Control: Theoretical Framework and Application to an Airborne Wind Energy System
,” Proceedings of IEEE Conference on Control Technology and Applications (
CCTA
), Hong Kong, China, Aug. 19–21, pp.
130
135
.10.1109/CCTA.2019.8920712
21.
Archer
,
C. L.
,
Delle Monache
,
L.
, and
Rife
,
D. L.
,
2014
, “
Airborne Wind Energy: Optimal Locations and Variability
,”
Int. J. Renewable Energy
,
64
, pp.
180
186
.10.1016/j.renene.2013.10.044
22.
Loyd
,
M.
,
1980
, “
Crosswind Kite Power
,”
J. Energy
,
4
(
3
), pp.
106
111
.10.2514/3.48021
23.
Fagiano
,
L.
,
Zgraggen
,
A.
,
Morari
,
M.
, and
Khammash
,
M.
,
2015
, “
Real-Time Optimization and Adaptation of the Crosswind Flight of Tethered Wings for Airborne Wind Energy
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
434
448
.10.1109/TCST.2014.2332537
24.
Zgraggen
,
A. U.
,
Fagiano
,
L.
, and
Morari
,
M.
,
2013
, “
On Real-Time Optimization of Airborne Wind Energy Generators
,”
Proceedings of 52nd IEEE Conference Decision Control
, Florence, Italy, Dec. 10–13, pp.
385
390
.10.1109/CDC.2013.6759912
25.
Kehs
,
M.
,
Vermillion
,
C.
, and
Fathy
,
H.
,
2018
, “
Online Energy Maximization of an Airborne Wind Energy Turbine in Simulated Periodic Flight
,”
IEEE Trans. Control Syst. Technol.
,
26
(
2
), pp.
393
403
.10.1109/TCST.2017.2665553
26.
Cobb
,
M.
,
Deodhar
,
N.
, and
Vermillion
,
C.
,
2018
, “
Lab-Scale Experimental Characterization and Dynamic Scaling Assessment for Closed-Loop Crosswind Flight of Airborne Wind Energy Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
7
), p.
071005
.10.1115/1.4038650
27.
Deodhar
,
N.
,
Bafandeh
,
A.
,
Deese
,
J.
,
Smith
,
B.
,
Muyimbwa
,
T.
,
Vermillion
,
C.
, and
Tkacik
,
P.
,
2017
, “
Laboratory-Scale Flight Characterization of a Multitethered Aerostat for Wind Energy Generation
,”
AIAA J.
,
55
(
6
), pp.
1823
1832
.10.2514/1.J054407
28.
Nikpoorparizi
,
P.
,
Deodhar
,
N.
, and
Vermillion
,
C.
,
2018
, “
Modeling, Control Design, and Combined Plant/Controller Optimization for an Energy-Harvesting Tethered Wing
,”
IEEE Trans. Control Syst. Technol.
,
26
(
4
), pp.
1157
1169
.10.1109/TCST.2017.2721361
29.
Altaeros
,
2020
, “
Altaeros Energies Achieves Breakthrough in High Altitude Wind Power
,”
Altaeros, Somerville, MA
, accessed Apr. 1, 2020, http://www.altaeros.com/
30.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
2
,
MIT Press
,
Cambridge, MA
.
31.
González
,
J.
,
Dai
,
Z.
,
Hennig
,
P.
, and
Lawrence
,
N.
,
2016
, “
Batch Bayesian Optimization Via Local Penalization
,”
Proceedings of 19th International Conference on Artificial Intelligence and Statistics
,
Cadiz, Spain
, May 9–11, pp.
648
657
.https://arxiv.org/abs/1505.08052
32.
Huber
,
M. F.
,
2013
, “
Recursive Gaussian Process Regression
,”
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, Vancouver, BC, Canada, May 26–31
, pp.
3362
3366
.10.1109/ICASSP.2013.6638281
33.
Deese
,
J.
, and
Vermillion
,
C.
,
2020
, “
Real-Time Experimental Optimization of Closed-Loop Crosswind Flight of Airborne Wind Energy Systems Via Recursive Gaussian Process-Based Adaptive Control
,” Proceedings of IEEE Conference on Control Technology and Applications (
CCTA
),
Montreal, QC, Canada
, Aug. 24–26.10.1109/CCTA41146.2020.9206305
You do not currently have access to this content.