Abstract

A new method is proposed to estimate and analyze the vehicle lateral stability region, which provides a direct and intuitive demonstration for the safety and stability control of ground vehicles. Based on a four-wheel vehicle model and a nonlinear two-dimensional (2D) analytical LuGre tire model, a local linearization method is applied to estimate the vehicle lateral stability regions by analyzing the vehicle stability at each operation point on a phase plane, which includes but not limited to the equilibrium points. As the collections of all the locally stable operation points, the estimated stability regions are conservative because both vehicle and tire stability are simultaneously considered, which are especially important for characterizing the stability features of highly/fully automated ground vehicles (AGV). The obtained lateral stability regions can be well explained by the vehicle characteristics of oversteering and understeering in the context of vehicle handling stability. The impacts of vehicle lateral load transfer, longitudinal velocity, tire-road friction coefficient, and steering angle on the estimated stability regions are presented and discussed. To validate the correctness of the estimated stability regions, a case study by matlab/simulink and CarSim® co-simulation is presented and discussed.

References

References
1.
Anderson
,
J. M.
,
Kalra
,
N.
,
Stanley
,
K. D.
,
Sorensen
,
P.
,
Samaras
,
C.
, and
Oluwatola
,
O. A.
2014
,
Autonomous Vehicle Technology: A Guide for Policymakers
,
Rand Corp
,
Santa Monica, CA
.
2.
Vaa
,
T.
,
Penttinen
,
M.
, and
Spyropoulou
,
I.
,
2007
, “
Intelligent Transport Systems and Effects on Road Traffic Accidents: State of the Art
,”
IET Intell. Transp. Syst.
,
1
(
2
), pp.
81
88
.10.1049/iet-its:20060081
3.
Levinson
,
J.
,
Askeland
,
J.
,
Becker
,
J.
,
Dolson
,
J.
,
Held
,
D.
,
Kammel
,
S.
,
Kolter
,
J.
,
Langer
,
D.
,
Pink
,
O.
,
Pratt
,
V.
,
Sokolsky
,
M.
,
Stanek
,
G.
,
Stavens
,
D.
,
Teichman
,
A.
,
Werling
,
M.
, and
Thrun
,
S.
,
2011
, “
Towards Fully Autonomous Driving: Systems and Algorithms
,”
IEEE Intelligent Vehicle Symposium (IV)
, Baden-Baden, Germany, June 5–9, pp.
163
168
.10.1109/IVS.2011.5940562
4.
Maurer
,
M.
,
Gerdes
,
J. C.
,
Lenz
,
B.
, and
Winner
,
H.
,
2015
,
Autonomous Driving Technical, Legal and Social Aspects
,
Daimler Und Benz-Stiftung
,
Ladenburg, Germany
.
5.
Person
,
M.
,
Jensen
,
M.
,
Smith
,
A. O.
, and
Gutierrez
,
H.
,
2019
, “
Multimodal Fusion Object Detection System for Autonomous Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
7
), p.
071017
.10.1115/1.4043222
6.
SAE
,
2018
, “
Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles
,”
SAE
Paper No. SAE-J3016.https://www.sae.org/standards/content/j3016_201806/
7.
Cheng
,
H.
,
Zheng
,
N.
,
Zhang
,
X.
,
Qin
,
J.
, and
Van de Wetering
,
H.
,
2007
, “
Interactive Road Situation Analysis for Driver Assistance and Safety Warning Systems: Framework and Algorithms
,”
IEEE Trans. Intell. Transp. Syst.
,
8
(
1
), pp.
157
167
.10.1109/TITS.2006.890073
8.
Cerone
,
V.
,
Milanese
,
M.
, and
Regruto
,
D.
,
2009
, “
Combined Automatic Lane-Keeping and Driver's Steering Through a 2-DOF Control Strategy
,”
IEEE Trans. Control Syst. Technol.
,
17
(
1
), pp.
135
142
.10.1109/TCST.2008.924558
9.
Gehrig
,
S.
, and
Stein
,
F.
,
2007
, “
Collision Avoidance for Vehicle-Following Systems
,”
IEEE Trans. Intell. Transp. Syst.
,
8
(
2
), pp.
233
244
.10.1109/TITS.2006.888594
10.
Inagaki
,
S.
,
Kushiro
,
I.
, and
Yamamoto
,
M.
,
1995
, “
Analysis on Vehicle Stability in Critical Cornering Using Phase-Plane Method
,”
JSAE Rev.
,
16
(
2
), pp.
287
292
.https://trid.trb.org/view.aspx?id=494461
11.
Jaafari
,
S.
, and
Shirazi
,
K.
,
2018
, “
Integrated Vehicle Dynamics Control Via Torque Vectoring Differential and Electronic Stability Control to Improve Vehicle Handling and Stability Performance
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
7
), p.
071003
.10.1115/1.4038657
12.
Ono
,
E.
,
Hosoe
,
S.
,
Tuan
,
H. D.
, and
Doi
,
S.
,
1998
, “
Bifurcation in Vehicle Dynamics and Robust Front Wheel Steering Control
,”
IEEE Trans. Control Syst. Technol.
,
6
(
3
), pp.
412
420
.10.1109/87.668041
13.
Shen
,
S.
,
Wang
,
J.
,
Shi
,
P.
, and
Premier
,
G.
,
2007
, “
Nonlinear Dynamics and Stability Analysis of Vehicle Plane Motions
,”
Veh. Syst. Dyn.
,
45
(
1
), pp.
15
35
.10.1080/00423110600828285
14.
Ko
,
Y. E.
, and
Lee
,
J. M.
,
2002
, “
Estimation of the Stability Region of a Vehicle in Plane Motion Using a Topological Approach
,”
Int. J. Veh. Des.
,
30
(
3
), pp.
181
192
.10.1504/IJVD.2002.002032
15.
Bobier
,
C. G.
, and
Gerdes
,
J. C.
,
2013
, “
Staying Within the Nullcline Boundary for Vehicle Envelope Control Using a Sliding Surface
,”
Veh. Syst. Dyn.
,
51
(
2
), pp.
199
217
.10.1080/00423114.2012.720377
16.
Bobier
,
C. G.
,
Beal
,
C. E.
,
Kegelman
,
J. C.
,
Hindiyeh
,
R. Y.
, and
Gerdes
,
J. C.
,
2019
, “
Vehicle Control Synthesis Using Phase Portraits of Planar Dynamics
,”
Veh. Syst. Dyn.
,
57
(
9
), pp.
1318
1337
.10.1080/00423114.2018.1502456
17.
Beal
,
C. E.
, and
Boyd
,
C.
,
2019
, “
Coupled Lateral-Longitudinal Vehicle Dynamics and Control Design With Three-Dimensional State Portraits
,”
Veh. Syst. Dyn.
,
57
(
2
), pp.
286
313
.10.1080/00423114.2018.1467019
18.
Farroni
,
F.
,
Russo
,
M.
,
Russo
,
R.
,
Terzo
,
M.
, and
Timpone
,
F.
,
2013
, “
A Combined Use of Phase Plane and Handling Diagram Method to Study the Influence of Tyre and Vehicle Characteristics on Stability
,”
Veh. Syst. Dyn.
,
51
(
8
), pp.
1265
1285
.10.1080/00423114.2013.797590
19.
Rossa
,
F. D.
,
Gobbi
,
M.
,
Mastinu
,
G.
,
Piccardi
,
C.
, and
Previati
,
G.
,
2014
, “
Bifurcation Analysis of a Car and Driver Model
,”
Veh. Syst. Dyn.
,
52
(
sup1
), pp.
142
156
.10.1080/00423114.2014.886709
20.
Ni
,
J.
,
Hu
,
J.
, and
Le
,
C.
,
2017
, “
Envelope Control for Four-Wheel Independently Actuated Autonomous Ground Vehicle Through AFS/DYC Integrated Control
,”
IEEE Trans. Veh. Technol.
,
66
(
11
), pp.
9712
9726
.10.1109/TVT.2017.2723418
21.
Johnson
,
D. B.
, and
Huston
,
J. C.
,
1984
, “
Nonlinear Lateral Stability Analysis of Road Vehicles Using Lyapunov Second Method
,”
SAE
Paper No. 841057.10.4271/841057
22.
Samsundar
,
J.
, and
Huston
,
J.
,
1998
, “
Estimating Lateral Stability Region of a Nonlinear 2 Degree-of-Freedom Vehicles
,”
SAE
Paper No. 981172.10.4271/981172
23.
Yin
,
G.
,
Qing
,
Z.
, and
Wang
,
J.
,
2013
, “
Estimating Lateral Stability Region for Four Wheel Independently-Actuated Electric Vehicle Considering Steering
,”
SAE
Paper No. 13CV-0097.10.4271/2013-01-2373
24.
Sadri
,
S.
, and
Wu
,
C.
,
2013
, “
Stability Analysis of a Nonlinear Vehicle Model in Plane Motion Using the Concept of Lyapunov Exponents
,”
Veh. Syst. Dyn.
,
51
(
6
), pp.
906
924
.10.1080/00423114.2013.771785
25.
Currier
,
P.
,
2011
, “
A Method for Modeling and Prediction of Ground Vehicle Dynamics and Stability in Autonomous Systems
,”
Ph.D. Thesis
,
Virginia Tech
, Blacksburh, VA.http://hdl.handle.net/10919/27632
26.
Hashemi
,
E.
,
Pirani
,
M.
,
Khajepour
,
A.
, and
Kasaiezadeh
,
A.
,
2016
, “
A Comprehensive Study on the Stability Analysis of Vehicle Dynamics With Pure Combined Slip Tyre Models
,”
Veh. Syst. Dyn.
,
54
(
12
), pp.
1736
1761
.10.1080/00423114.2016.1232417
27.
Yi
,
J.
,
Li
,
J.
,
Lu
,
J.
, and
Liu
,
Z.
,
2012
, “
On the Stability and Agility of Aggressive Vehicle Maneuvers: A Pendulum-Turn Maneuver Example
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
663
676
.10.1109/TCST.2011.2121908
28.
Hoffman
,
R. C.
,
Stein
,
J. L.
,
Louca
,
L. S.
, and
Huh
,
K.
,
2008
, “
Using the Milliken Moment Method and Dynamic Simulation to Evaluate Vehicle Stability and Controllability
,”
Int. J. Veh. Des.
,
48
(
1/2
), pp.
132
148
.10.1504/IJVD.2008.021156
29.
Milliken
,
D. L.
,
Kasprzak
,
E. M.
,
Metz
,
L. D.
, and
Milliken
,
W. F.
,
2003
, “
Race Car Vehicle Dynamics-Problem, Answers, and Experiments
,”
SAE
Paper No. R-280.https://www.sae.org/publications/books/content/r-280/
30.
Daher
,
A.
,
Bardawil
,
C.
, and
Daher
,
N.
,
2017
, “
Vehicle Stability Based on G-G Diagram Through Braking and Driveline
,”
Proceedings of the 2017 American Control Conference
, Seattle, WA, May 24–26, pp.
309
314
.10.23919/ACC.2017.7962971
31.
Diels
,
C.
, and
Bos
,
J. E.
,
2016
, “
Self-Driving Carsickness
,”
Appl. Ergonom.
,
53
, pp.
374
382
.10.1016/j.apergo.2015.09.009
32.
Salter
,
S.
,
Thake
,
D.
,
Kanarachos
,
S.
, and
Diels
,
C.
,
2019
, “
Motion Sickness Prediction Device for Automated Vehicles
,”
Int. J. Mech. Prod. Eng.
,
7
(
2
), pp.
68
74
. https://www.researchgate.net/publication/333198995_Motion_Sickness_Prediction_Device_for_Automated_Vehicles
33.
Huang
,
Y.
,
Liang
,
W.
, and
Chen
,
Y.
,
2017
, “
Estimation and Analysis of Vehicle Lateral Stability Region
,”
Proceedings of the 2017 American Control Conference (Invited Paper)
, Seattle, WA, May 24–26, pp.
4303
4308
.10.23919/ACC.2017.7963617
34.
Liang
,
W.
,
Medanic
,
J.
, and
Ruhl
,
R.
,
2008
, “
Analytical Dynamic Tire Model
,”
Veh. Syst. Dyn.
,
46
(
3
), pp.
197
227
.10.1080/00423110701267466
35.
Pacejka
,
H. B.
, and
Bakker
,
E.
,
1992
, “
Magic Formula Tyre Model
,”
Veh. Syst. Dyn.
,
21
(
Sup. 001
), pp.
1
18
.10.1080/00423119208969994
36.
Wang
,
R.
, and
Wang
,
J.
,
2013
, “
Tire-Road Friction Coefficient and Tire Cornering Stiffness Estimation Based on Longitudinal Tire Force Difference Generation
,”
Control Eng. Pract.
,
21
(
1
), pp.
65
75
.10.1016/j.conengprac.2012.09.009
37.
Anagnost
,
A. A.
, and
Desoer
,
C. A.
,
1991
, “
An Elementary Proof of the Routh-Hurwitz Stability Criterion
,”
Circuits Syst. Signal Process.
,
10
(
1
), pp.
101
114
.10.1007/BF01183243
38.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
, 4th ed.,
Wiley
,
NY
.
39.
Pacejka
,
H. B.
,
1973
, “
Simplified Analysis of Steady-State Turning Behaviour of Motor Vehicles Part 2: Stability of the Steady-State Turn
,”
Veh. Syst. Dyn.
,
2
(
4
), pp.
173
183
.10.1080/00423117308968440
40.
Huang
,
Y.
, and
Chen
,
Y.
,
2017
, “
Vehicle Lateral Motion Control Based on Estimated Stability Regions
,”
ASME Paper No. DSCC2017-5152.
41.
Rossa
,
F. D.
,
Mastinu
,
G.
, and
Piccardi
,
C.
,
2012
, “
Bifurcation Analysis of an Automobile Model Negotiating a Curve
,”
Veh. Syst. Dyn.
,
50
(
10
), pp.
1539
1562
.10.1080/00423114.2012.679621
You do not currently have access to this content.