Abstract

The output flow ripple of the axial piston pump is one of the excitation sources for the hydraulic system vibration. The amplitudes of its specific harmonics must be reduced to avoid the resonance with the hydraulic pipeline. In this paper, a method on the nonuniform distribution of the pistons is put forward to adjust the flow ripple. The deflection angles of the pistons are used to describe the distribution rule. The distribution rule is imported to the Fourier expansion of the flow rate of each single-piston chamber, and then every single flow rate is superposed to obtain the Fourier coefficient of total flow rate that becomes the function of deflection angles. After this, objective optimization design is carried out to reduce the amplitudes of specific harmonics. Finally, the dynamic simulation model of the nonuniformly distributed axial piston pump is established to verify the effects of objective optimization. The results show that the amplitude of the ninth harmonic of the flow ripple can be reduced by about 40%, and the reductions are about 99% for the 18th and 27th harmonic.

References

References
1.
Yang
,
H.-y.
, and
Pan
,
M.
,
2015
, “
Engineering Research in Fluid Power: A Review
,”
J. Zhejiang Univ.-Sci. A
,
16
(
6
), pp.
427
442
.10.1631/jzus.A1500042
2.
Hughes
,
M.
,
1977
, “
Flexural Vibrations in Rigid Pipework Due to Liquid Borne Noise
,”
Proceeding of the Seminar on Quiet Oil Hydraulic Systems
, Institution of Mechanical Engineers, London, UK, Nov., pp.
51
58
.
3.
Ye
,
S.-G.
,
Zhang
,
J.-H.
, and
Xu
,
B.
,
2018
, “
Noise Reduction of an Axial Piston Pump by Valve Plate Optimization
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
57
.10.1186/s10033-018-0258-x
4.
O'Shea
,
C.
,
2016
, “
Hydraulic Flow Ripple Cancellation Using the Primary Flow Source
,”
ASME
Paper No. FPMC2016-1783.10.1115/FPMC2016-1783
5.
Kumar
,
A.
,
Das
,
J.
,
Dasgupta
,
K.
, and
Barnwal
,
M. K.
,
2018
, “
Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System
,”
J. Inst. Eng. (India): Ser. C
,
99
(
2
), pp.
169
174
.10.1007/s40032-017-0351-4
6.
Yuan
,
C.
,
Pan
,
M.
, and
Plummer
,
A.
,
2020
, “
A Review of Switched Inertance Hydraulic Converter Technology
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
5
), p. 050801.10.1115/1.4046103
7.
Kim
,
K.-H.
,
Jang
,
J.-S.
, and
Kim
,
D.-S. J. H.-E.
,
2005
, “
Reduction of Pressure Ripples Using a Parallel Line in Hydraulic Pipeline
,”
Int. J. Autom. Technol.
,
6
(
1
), pp.
65
70
.http://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE00577182#
8.
Kwong
,
A.
, and
Edge
,
K.
,
1998
, “
A Method to Reduce Noise in Hydraulic Systems by Optimizing Pipe Clamp Locations
,”
Proc. Inst. Mech. Eng., Part I
,
212
(
4
), pp.
267
280
.10.1243/0959651981539451
9.
Demarchi
,
J. N.
, and
Ohlson
,
J.
,
1980
, “
Lightweight Hydraulic System Development and Flight Test
,”
SAE Trans.
, 89(1980), pp.
3586
3592
.
10.
Kim
,
T.
, and
Ivantysynova
,
M.
, “
Active Vibration/Noise Control of Axial Piston Machine Using Swash Plate Control
,”
ASME, New York.
11.
Wu
,
X.
,
Chen
,
C.
,
Hong
,
C.
, and
He
,
Y.
,
2017
, “
Flow Ripple Analysis and Structural Parametric Design of a Piston Pump
,”
J. Mech. Sci. Technol.
,
31
(
9
), pp.
4245
4254
.10.1007/s12206-017-0823-8
12.
Casoli
,
P.
,
Pastori
,
M.
, and
Scolari
,
F.
,
2019
, “
Swash Plate Design for Pressure Ripple Reduction–A Theoretical Analysis
,”
AIP Conf. Proc.
,
2191
(
1
), p.
020038
.10.1063/1.5138771
13.
Frosina
,
E.
,
Marinaro
,
G.
,
Senatore
,
A.
, and
Pavanetto
,
M.
,
2018
, “
Effects of PCFV and Pre-Compression Groove on the Flow Ripple Reduction in Axial Piston Pumps
,”
Proceedings of the Global Fluid Power Society Ph.D. Symposium
(
GFPS
), Samara, Russia, July 18–20,
pp.
1
7
.10.1109/GFPS.2018.8472389
14.
Bergada
,
J.
,
Kumar
,
S.
,
Davies
,
D. L.
, and
Watton
,
J.
,
2012
, “
A Complete Analysis of Axial Piston Pump Leakage and Output Flow Ripples
,”
Appl. Math. Modell.
,
36
(
4
), pp.
1731
1751
.10.1016/j.apm.2011.09.016
15.
Xu
,
B.
,
Ye
,
S.
,
Zhang
,
J.
, and
Zhang
,
C.
,
2016
, “
Flow Ripple Reduction of an Axial Piston Pump by a Combination of Cross-Angle and Pressure Relief Grooves: Analysis and Optimization
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2531
2545
.10.1007/s12206-016-0515-9
16.
Harrison
,
K.
, and
Edge
,
K.
,
2000
, “
Reduction of Axial Piston Pump Pressure Ripple
,”
Proc. Inst. Mech. Eng., Part I
,
214
(
1
), pp.
53
64
.10.1243/0959651001540519
17.
Gao
,
F.
,
Ouyang
,
X.
,
Yang
,
H.
, and
Xu
,
X.
,
2013
, “
A Novel Pulsation Attenuator for Aircraft Piston Pump
,”
Mechatronics
,
23
(
6
), pp.
566
572
.10.1016/j.mechatronics.2013.05.004
18.
Zhang
,
Y.
, and
Alleyne
,
A.
,
2003
, “
A Simple Novel Approach to Active Vibration Isolation With Electrohydraulic Actuation
,”
ASME J. Dyn. Sys., Meas., Control
,
125
(
1
), pp.
125
128
.10.1115/1.1541670
19.
Mehta
,
V. S.
, and
Manring
,
N. D.
, “
Piston Pump Noise Attenuation Through Modification of Piston Travel Trajectory
,”
ASME, New York.
20.
Ericson
,
L.
,
Johansson
,
A.
, and
Palmberg
,
J.-O.
, “
Noise Reduction by Means of Non-Uniform Placement of Pistons in a Fluid Power Machine
,”
ASME, New York.
21.
Manring
,
N.
,
2013
,
Fluid Power Pumps and Motors: Analysis, Design and Control
,
McGraw-Hill Professional
, New York.
22.
Helgestad
,
B.
,
Foster
,
K.
, and
Bannister
,
F.
,
1974
, “
Pressure Transients in an Axial Piston Hydraulic Pump
,”
Proc. Inst. Mech. Eng.
,
188
(
1
), pp.
189
199
.10.1243/PIME_PROC_1974_188_021_02
23.
Ouyang
,
X.
,
Gao
,
F.
,
Yang
,
H.
, and
Wang
,
H.
,
2012
, “
Modal Analysis of the Aircraft Hydraulic-System Pipeline
,”
J. Aircraft
,
49
(
4
), pp.
1168
1174
.10.2514/1.C031660
24.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.10.1137/S0036144504446096
25.
Xia
,
S.
,
Zhang
,
J.
,
Ye
,
S.
,
Xu
,
B.
,
Xiang
,
J.
, and
Tang
,
H.
,
2019
, “
A Mechanical Fault Detection Strategy Based on the Doubly Iterative Empirical Mode Decomposition
,”
Appl. Acoust.
,
155
, pp.
346
357
.10.1016/j.apacoust.2019.05.027
26.
Manring
,
N. D.
,
2000
, “
The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump
,”
ASME J. Dyn. Sys., Meas., Control
,
122
(
2
), pp.
263
268
.10.1115/1.482452
You do not currently have access to this content.