Abstract

The synchronization process takes up almost one half of the time of the gear-shifting process, and also influences the impacts between the sleeve and the gear ring. To avoid impacts and reduce time duration, a time-optimal control strategy with angle alignment is necessary for the synchronization process. Moreover, to be better accord with practice, the motor torque response process should be taken into account. The parameters in the torque response process depend on control commands, which makes the control problem a multistage one. To solve these issues, a rule-based control strategy is extracted from the dynamic programming (DP) solution of the multistage time-optimal control problem. To obtain this strategy, the dynamic model for the synchronization process with a modified Sigmoid model to precisely depict the torque response process is first solved. Then, the control problem is formulated as a multistage time-optimal control problem with three states and solved by DP. Based on the DP results, a three-stage and a four-stage rule-based control strategies are extracted for normal operation situation and startup situation, respectively. Finally, through comparative studies, the proposed rule-based control strategy can eliminate the speed difference and angle difference simultaneously with almost the same time of the bang–bang control, while the bang–bang control cannot obtain the zero terminals. Moreover, the proposed control strategy only takes 20 ms more than the pure speed synchronization control in the worst case. It would decrease when the initial speed difference increases.

References

1.
Barton
,
B.
, and
Schütte
,
P.
,
2017
, “
Electric Vehicle Law and Policy: A Comparative Analysis
,”
J. Energy Natural Resour. Law
,
35
(
2
), pp.
147
170
.10.1080/02646811.2017.1262087
2.
Kim
,
Y. H.
,
2014
, “
A Global Analysis and Market Strategy in the Electric Vehicle Battery Industry
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.https://dspace.mit.edu/handle/1721.1/90747
3.
Yuan
,
Y.
,
Wu
,
G.
,
He
,
X.
,
Song
,
Y.
, and
Zhang
,
X.
,
2013
, “
Electric Vehicle Drivetrain Development in china
,”
ASME Paper No. ISFA2012-7212.
10.1115/ISFA2012-7212
4.
Eckert
,
J. J.
,
Corrêa
,
F. C.
,
Santiciolli
,
F. M.
,
Costa
,
E. D S.
,
Dionísio
,
H. J.
, and
Dedini
,
F. G.
,
2016
, “
Vehicle Gear Shifting Strategy Optimization With Respect to Performance and Fuel Consumption
,”
Mech. Based Des. Struct. Mach.
,
44
(
1–2
), pp.
123
136
.10.1080/15397734.2015.1094669
5.
Hailu
,
H. N.
, and
Redda
,
D. T.
,
2018
, “
Design and Development of Power Transmission System for Green and Light Weight Vehicles: A Review
,”
Open Mech. Eng. J.
,
12
(
1
), pp.
81
94
.10.2174/1874155X01812010081
6.
Socin
,
R. J.
, and
Walters
,
L. K.
,
1968
, “
Manual Transmission Synchronizers
,”
SAE Trans.
,
77
, pp.
31
65
.
7.
Lovas
,
L.
,
Play
,
D.
,
Márialigeti
,
J.
, and
Rigal
,
J.-F.
,
2006
, “
Mechanical Behaviour Simulation for Synchromesh Mechanism Improvements
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
220
(
7
), pp.
919
945
.10.1243/09544070D21604
8.
Chen
,
H.
,
Cheng
,
X.
, and
Tian
,
G.
,
2016
, “
Modeling and Analysis of Gear-Shifting Process of Motor-Transmission Coupled Drive System
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021013
.10.1115/1.4032100
9.
Chen
,
H.
, and
Tian
,
G.
,
2016
, “
Modeling and Analysis of Engaging Process of Automated Mechanical Transmissions
,”
Multibody Syst. Dyn.
,
37
(
4
), pp.
345
369
.10.1007/s11044-015-9490-7
10.
Fu
,
H.
,
Tian
,
G.
,
Chen
,
Y.
, and
Chen
,
Q.
,
2009
, “
A Novel Control Scheme of Propulsion Motor for Integrated Powertrain of Electric Bus
,”
2009 IEEE Vehicle Power and Propulsion Conference
,
Dearborn, MI
, Sept. 7–10, pp.
1496
1501
.10.1109/VPPC.2009.5289551
11.
Falcone
,
F. J.
,
Burns
,
J.
, and
Nelson
,
D. J.
,
2010
, “
Closed Loop Transaxle Synchronization Control Design
,”
SAE Technical Paper No. 2010-01-0817
. 10.4271/2010-01-0817
12.
Yu
,
H.-L.
,
Xi
,
J.-Q.
,
Zhang
,
F-Q.
, and
Hu
,
Y-h.
,
2014
, “
Research on Gear Shifting Process Without Disengaging Clutch for a Parallel Hybrid Electric Vehicle Equipped With Amt
,”
Math. Probl. Eng.
,
2014
, pp.
1
12
.10.1155/2014/985652
13.
Yu
,
C.-H.
,
Tseng
,
C.-Y.
, and
Wang
,
C.-P.
,
2012
, “
Smooth Gear-Change Control for ev Clutchless Automatic Manual Transmission
,”
2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
KaoHsiung, Taiwan
, July 11–14, pp.
971
976
.10.1109/AIM.2012.6266016
14.
Tseng
,
C.-Y.
, and
Yu
,
C.-H.
,
2015
, “
Advanced Shifting Control of Synchronizer Mechanisms for Clutchless Automatic Manual Transmission in an Electric Vehicle
,”
Mech. Mach. Theory
,
84
, pp.
37
56
.10.1016/j.mechmachtheory.2014.10.007
15.
Huang
,
J.
,
Zhang
,
J.
,
Huang
,
W.
, and
Yin
,
C.
,
2018
, “
Optimal Speed Synchronization Control With Disturbance Compensation for an Integrated Motor-Transmission Powertrain System
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
4
), p.
041001
.10.1115/1.4041757
16.
Mo
,
W.
,
Walker
,
P. D.
, and
Zhang
,
N.
,
2019
, “
Dynamic Analysis and Control for an Electric Vehicle With Harpoon-Shift Synchronizer
,”
Mech. Mach. Theory
,
133
, pp.
750
766
.10.1016/j.mechmachtheory.2018.11.018
17.
Mo
,
W.
,
Wu
,
J.
,
Walker
,
P. D.
, and
Zhang
,
N.
,
2021
, “
Shift Characteristics of a Bilateral Harpoon-Shift Synchronizer for Electric Vehicles Equipped With Clutchless Amts
,”
Mech. Syst. Signal Process.
,
148
, p.
107166
.10.1016/j.ymssp.2020.107166
18.
Laird
,
M.
,
Lawton
,
B.
, and
Gregory
,
R.
,
1990
, “
Dog Clutches for Rapid Gear Changes in Automotive Gearboxes
,”
Proceedings of the Institution of Mechanical Engineers, First International Conference, Gearbox Noise and Vibrations, IMechE
,
Churchill College, University of Cambridge
,
Cambridge, UK
, Apr. 9, pp.
103
112
.
19.
Bóka
,
G.
,
Lovas
,
L.
,
Márialigeti
,
J.
, and
Trencséni
,
B.
,
2010
, “
Engagement Capability of Face-Dog Clutches on Heavy Duty Automated Mechanical Transmissions With Transmission Brake
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
224
(
9
), pp.
1125
1139
.10.1243/09544070JAUTO1435
20.
Duan
,
C.
,
2014
, “
Analytical Study of a Dog Clutch in Automatic Transmission Application
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
7
(
3
), pp.
1155
1162
.10.4271/2014-01-1775
21.
Lu
,
Z.
,
Chen
,
H.
,
Wang
,
L.
, and
Tian
,
G.
,
2017
, “
The Engaging Process Model of Sleeve and Teeth Ring With a Precise, Continuous and Nonlinear Damping Impact Model in Mechanical Transmissions
,”
SAE Technical Paper No. 2017-01-2443
.10.4271/2017-01-2443
22.
Liu
,
H.
,
Lei
,
Y.
,
Li
,
Z.
,
Zhang
,
J.
, and
Li
,
Y.
,
2012
, “
Gear-Shift Strategy for a Clutchless Automated Manual Transmission in Battery Electric Vehicles
,”
SAE Int. J. Commercial Veh.
,
5
(
1
), pp.
57
62
.10.4271/2012-01-0115
23.
Lu
,
Z.
,
Chen
,
H.
,
Wang
,
L.
, and
Tian
,
G.
,
2018
, “
Optimal Dual Synchronization Control of Rotational Speed and Angle in Non-Synchronizer Automatic Mechanical Transmission. Tech. rep
,”
The 14th International Symposium on Advanced Vehicle Control
,
Beijing China
, July 20.
24.
Piracha
,
M. Z.
,
Grauers
,
A.
,
Barrientos
,
E.
,
Budacs
,
H.
, and
Hellsing
,
J.
,
2019
, “
Model Based Control of Synchronizers for Reducing Impacts During Sleeve to Gear Engagement
,”
SAE Paper No. 2019-01-1303
.10.4271/2019-01-1303
25.
Piracha
,
M. Z.
,
Grauers
,
A.
, and
Hellsing
,
J.
,
2020
, “
Feedback Control of Synchronizers for Reducing Impacts During Sleeve to Gear Engagement
,”
SAE Paper No. 2020-01-0960
.10.4271/2020-01-0960
26.
Lu
,
Z.
,
Tian
,
G.
, and
Onori
,
S.
,
2020
, “
Time-Optimal Coordination Control for the Gear-Shifting Process in Electric-Driven Mechanical Transmission (Dog Clutch) Without Impacts
,”
SAE Int. J. Elect. Veh.
,
9
(
2
), pp.
1
14
.https://www.sae.org/publications/technical-papers/content/14-09-02-0010/
27.
Biasini
,
R.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2013
, “
A near-Optimal Rule-Based Energy Management Strategy for Medium Duty Hybrid Truck
,”
Int. J. Powertrains
,
2
(
2/3
), pp.
232
261
.10.1504/IJPT.2013.054151
28.
Li
,
H.
,
Yang
,
C.
,
Hu
,
Y.
,
Liao
,
X.
,
Zeng
,
Z.
, and
Zhe
,
C.
,
2016
, “
An Improved Reduced-Order Model of an Electric Pitch Drive System for Wind Turbine Control System Design and Simulation
,”
Renewable Energy
,
93
, pp.
188
200
.10.1016/j.renene.2016.02.063
29.
Amornwongpeeti
,
S.
,
Kiselychnyk
,
O.
,
Wang
,
J.
,
Shatti
,
N.
,
Shah
,
N.
, and
Soumelidis
,
M.
,
2017
, “
Adaptive Torque Control of IPMSM Motor Drives for Electric Vehicles
,”
IEEE 26th International Symposium on Industrial Electronics (ISIE)
, Edinburgh International Conference Center in Scotland,
Edinburgh, UK
, June 19–21, pp.
226
231
.10.1109/ISIE.2017.8001252
You do not currently have access to this content.