Abstract

This paper addresses the compensation of wave actuator dynamics in scalar extremum seeking (ES) for static maps. Infinite-dimensional systems described by partial differential equations (PDEs) of wave type have not been considered so far in the literature of ES. A distributed-parameter-based control law using back-stepping approach and Neumann actuation is initially proposed. Local exponential stability as well as practical convergence to an arbitrarily small neighborhood of the unknown extremum point is guaranteed by employing Lyapunov–Krasovskii functionals and averaging theory in infinite dimensions. Thereafter, the extension for wave equations with Dirichlet actuation, antistable wave PDEs as well as the design for the delay-wave PDE cascade are also discussed. Numerical simulations illustrate the theoretical results.

References

1.
Krstić
,
M.
, and
Wang
,
H.-H.
,
2000
, “
Stability of Extremum Seeking Feedback for General Nonlinear Dynamic Systems
,”
Automatica
,
36
(
4
), pp.
595
601
.10.1016/S0005-1098(99)00183-1
2.
Ghods
,
N.
, and
Krstic
,
M.
,
2011
, “
Source Seeking With Very Slow or Drifting Sensors
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
4
), p.
044504
.10.1115/1.4003639
3.
Scheinker
,
A.
, and
Krstic
,
M.
,
2014
, “
Non-C2 Lie Bracket Averaging for Nonsmooth Extremum Seekers
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
1
), p.
011010
.10.1115/1.4025457
4.
Frihauf
,
P.
,
Liu
,
S. J.
, and
Krstic
,
M.
,
2014
, “
A Single Forward-Velocity Control Signal for Stochastic Source Seeking With Multiple Nonholonomic Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
5
), p.
051024
.10.1115/1.4027577
5.
Bagheri
,
M.
,
Krstic
,
M.
, and
Naseradinmousavi
,
P.
,
2018
, “
Multivariable Extremum Seeking for Joint-Space Trajectory Optimization of a High-Degrees-of-Freedom Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
11
), p.
111017
.10.1115/1.4040752
6.
Oliveira
,
T. R.
,
Krstic
,
M.
, and
Tsubakino
,
D.
,
2017
, “
Extremum Seeking for Static Maps With Delays
,”
IEEE Trans. Automat. Control
,
62
(
4
), pp.
1911
1926
.10.1109/TAC.2016.2564958
7.
Rusiti
,
D.
,
Evangelisti
,
G.
,
Oliveira
,
T. R.
,
Gerdts
,
M.
, and
Krstic
,
M.
,
2019
, “
Stochastic Extremum Seeking for Dynamic Maps With Delays
,”
IEEE Control Syst. Lett.
,
3
(
1
), pp.
61
66
.10.1109/LCSYS.2018.2851602
8.
Feiling
,
J.
,
Koga
,
S.
,
Krstić
,
M.
, and
Oliveira
,
T. R.
,
2018
, “
Gradient Extremum Seeking for Static Maps With Actuation Dynamics Governed by Diffusion PDEs
,”
Automatica
,
95
(
9
), pp.
197
206
.10.1016/j.automatica.2018.05.023
9.
Oliveira
,
T. R.
,
Feiling
,
J.
,
Koga
,
S.
, and
Krstić
,
M.
,
2018
, “
Scalar Newton-Based Extremum Seeking for a Class of Diffusion PDEs
,”
IEEE Conference on Decision and Control
,
Miami Beach, FL
, Dec. 17–19, pp.
2926
2931
.10.1109/CDC.2018.8619260
10.
Oliveira
,
T. R.
,
Feiling
,
J.
, and
Krstic
,
M.
,
2019
, “
Extremum Seeking for Maximizing Higher Derivatives of Unknown Maps in Cascade With Reaction-Advection-Diffusion PDEs
,”
13th IFAC Workshop on Adaptive and Learning Control Systems
,
Winchester, UK
, Dec. 4–6, pp.
210
215
.10.1016/j.ifacol.2019.12.651
11.
Oliveira
,
T. R.
,
Feiling
,
J.
,
Koga
,
S.
, and
Krstic
,
M.
,
2020
, “
Extremum Seeking for Unknown Scalar Maps in Cascade With a Class of Parabolic Partial Differential Equations
,”
Int. J. Adaptive Control Signal Process.
, pp.
1
26
.10.1002/acs.3117
12.
Krstic
,
M.
,
2011
, “
Dead-Time Compensation for Wave/String PDEs
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
3
), p.
031004
.10.1115/1.4003638
13.
Moura
,
S. J.
,
Chaturvedi
,
N. A.
, and
Krstic
,
M.
,
2014
, “
Adaptive Partial Differential Equation Observer for Battery State-of-Charge/State-of-Health Estimation Via an Electrochemical Model
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
1
), p.
011015
.10.1115/1.4024801
14.
Sezgin
,
A.
, and
Krstic
,
M.
,
2015
, “
Boundary Backstepping Control of Flow-Induced Vibrations of a Membrane at High Mach Numbers
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
8
), p.
081003
.10.1115/1.4029468
15.
Ghaffari
,
A.
,
Moura
,
S.
, and
Krstic
,
M.
,
2015
, “
PDE-Based Modeling, Control, and Stability Analysis of Heterogeneous Thermostatically Controlled Load Populations
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
10
), p.
101009
.10.1115/1.4030817
16.
Wang
,
J.
,
Koga
,
S.
,
Pi
,
Y.
, and
Krstic
,
M.
,
2018
, “
Axial Vibration Suppression in a Partial Differential Equation Model of Ascending Mining Cable Elevator
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
11
), p.
111003
.10.1115/1.4040217
17.
Siranosian
,
A.
,
Krstic
,
M.
,
Smyshlyaev
,
A.
, and
Bement
,
M.
,
2009
, “
Motion Planning and Tracking for Tip Displacement and Deflection Angle for Flexible Beams
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
3
), p.
031009
.10.1115/1.3072152
18.
Gu
,
K.
, and
Niculescu
,
S. I.
,
2003
, “
Survey on Recent Results in the Stability and Control of Time-Delay Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
158
165
.10.1115/1.1569950
19.
Evesque
,
S.
,
Annaswamy
,
A. M.
,
Niculescu
,
S.
, and
Dowling
,
A. P.
,
2003
, “
Adaptive Control of a Class of Time-Delay Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
186
193
.10.1115/1.1567755
20.
Olgac
,
N.
, and
Sipahi
,
R.
,
2005
, “
The Cluster Treatment of Characteristic Roots and the Neutral Type Time-Delayed Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
88
97
.10.1115/1.1876494
21.
Olgac
,
N.
, and
Sipahi
,
R.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
215
223
.10.1115/1.1568121
22.
Bekiaris-Liberis
,
N.
, and
Krstic
,
M.
,
2014
, “
Compensation of Wave Actuator Dynamics for Nonlinear Systems
,”
IEEE Trans. Automat. Control
,
59
(
6
), pp.
1555
1572
.10.1109/TAC.2014.2309057
23.
Aarsnes
,
U. J. F.
,
Aamo
,
O. M.
, and
Krstic
,
M.
,
2019
, “
Extremum Seeking for Real-Time Optimal Drilling Control
,”
American Control Conference
,
Philadelphia, PA
, July 10–12, pp.
5222
5227
.10.23919/ACC.2019.8815162
24.
Krstić
,
M.
,
2009
, “
Compensating a String PDE in the Actuation or Sensing Path of an Unstable ODE
,”
IEEE Trans. Automat. Control
,
54
(
6
), pp.
1362
1368
.10.1109/TAC.2009.2015557
25.
Krstić
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
,
SIAM
,
Philadelphia, PA
.
26.
Hale
,
J. K.
, and
Lunel
,
S. M. V.
,
1990
, “
Averaging in Infinite Dimensions
,”
J. Integral Equations Appl.
,
2
(
4
), pp.
463
494
.10.1216/jiea/1181075583
27.
Oliveira
,
T. R.
, and
Krstic
,
M.
,
2019
, “
Compensation of Wave PDEs in Actuator Dynamics for Extremum Seeking Feedback
,”
13th IFAC Workshop on Adaptive and Learning Control Systems
,
Winchester, UK
, Dec. 4–6, pp.
134
139
.10.1016/j.ifacol.2019.12.634
28.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
29.
Karafyllis
,
I.
, and
Krstic
,
M.
,
2018
,
Input-to-State Stability for PDEs
,
Springer
,
Cham, Switzerland
.
30.
Susto
,
G. A.
, and
Krstic
,
M.
,
2010
, “
Control of PDE–ODE Cascades With Neumann Interconnections
,”
J. Franklin Inst.
,
347
(
1
), pp.
284
314
.10.1016/j.jfranklin.2009.09.005
31.
Ghaffari
,
A.
,
Krstić
,
M.
, and
Nešić
,
D.
,
2012
, “
Multivariable Newton-Based Extremum Seeking
,”
Automatica
,
48
(
8
), pp.
1759
1767
.10.1016/j.automatica.2012.05.059
32.
Krstic
,
M.
,
2009
,
Delay Compensation for Nonlinear, Adaptive, and PDE Systems
,
Birkhauser
,
Boston, MA
.
33.
Datko
,
R.
,
Lagnese
,
J.
, and
Polis
,
M. P.
,
1986
, “
An Example on the Effect of Time Delays in Boundary Feedback Stabilization of Wave Equations
,”
SIAM J. Control Optim.
,
24
(
1
), pp.
152
156
.10.1137/0324007
34.
Liu
,
S.-J.
, and
Krstic
,
M.
,
2010
, “
Stochastic Averaging in Continuous Time and Its Applications to Extremum Seeking
,”
IEEE Trans. Automat. Control
,
55
(
10
), pp.
2235
2250
.10.1109/TAC.2010.2043290
35.
Ariyur
,
K.
, and
Krstić
,
M.
,
2003
,
Real Time Optimization by Extremum Seeking Control
,
Wiley
,
Hoboken, NJ
.
36.
Wang
,
L.
,
Chen
,
S.
, and
Ma
,
K.
,
2016
, “
On Stability and Application of Extremum Seeking Control Without Steady-State Oscillation
,”
Automatica
,
68
(
6
), pp.
18
26
.10.1016/j.automatica.2016.01.009
37.
Moura
,
S. J.
, and
Chang
,
Y. A.
,
2013
, “
Lyapunov-Based Switched Extremum Seeking for Photovoltaic Power Maximization
,”
Control Eng. Pract.
,
21
(
7
), pp.
971
980
.10.1016/j.conengprac.2013.02.009
38.
Scheinker
,
A.
, and
Krstić
,
M.
,
2014
, “
Extremum Seeking With Bounded Update Rates
,”
Syst. Control Lett.
,
63
(
1
), pp.
25
31
.10.1016/j.sysconle.2013.10.004
39.
Durr
,
H. B.
,
Stankovic
,
M. S.
,
Ebenbauer
,
C.
, and
Johansson
,
K. H.
,
2013
, “
Lie Bracket Approximation of Extremum Seeking Systems
,”
Automatica
,
49
(
6
), pp.
1538
1552
.10.1016/j.automatica.2013.02.016
40.
Grushkovskaya
,
V.
,
Zuyev
,
A.
, and
Ebenbauer
,
C.
,
2018
, “
On a Class of Generating Vector Fields for the Extremum Seeking Problem: Lie Bracket Approximation and Stability Properties
,”
Automatica
,
94
(
8
), pp.
151
160
.10.1016/j.automatica.2018.04.024
41.
Oliveira
,
T. R.
,
Feiling
,
J.
,
Koga
,
S.
, and
Krstic
,
M.
,
2020
, “
Multivariable Extremum Seeking for PDE Dynamic Systems
,”
IEEE Trans. Automat. Control
, pp.
1
8
.10.1109/TAC.2020.3005177
You do not currently have access to this content.