Abstract

Wind turbine performance monitoring is a complex task because the power has a multivariate dependence on ambient conditions and working parameters. Furthermore, wind turbine nacelle anemometers are placed behind the rotor span and the control system estimates the upwind flow through a nacelle transfer function: this introduces a data quality issue. This study is devoted to the analysis of data-driven techniques for wind turbine performance control and monitoring: operation data of six 850 kW wind turbines sited in Italy have been employed. The objective of this study is an assessment of several easily implementable techniques and input variables selections for data-driven models whose target is the power of a wind turbine. Three model types are selected: one is linear (Principal Component Regression) and two are nonlinear (Support Vector Regression with Gaussian Kernel and Feedforward Artificial Neural Network). The models' validation provides meaningful indications: the linear model in general has lower performance because it cannot reproduce properly the nonlinear pitch behavior when approaching rated power. Therefore, it is concluded that a nonlinear model should be employed and the achieved mean absolute error is of the order of 1.3% of the rated power. Furthermore, the errors are kept at the order of 2% of the rated power for the models whose input is the rotor speed instead that wind speed: this observation supports that, in case it is needed because of nacelle anemometer biases, the power monitoring can be acceptably implemented using the rotor speed.

References

References
1.
Ioannou
,
A.
,
Angus
,
A.
, and
Brennan
,
F.
,
2018
, “
A Lifecycle Techno-Economic Model of Offshore Wind Energy for Different Entry and Exit Instances
,”
Appl. Energy
,
221
, pp.
406
424
.10.1016/j.apenergy.2018.03.143
2.
Leite
,
G. D. N. P.
,
Araújo
,
A. M.
, and
Rosas
,
P. A. C.
,
2018
, “
Prognostic Techniques Applied to Maintenance of Wind Turbines: A Concise and Specific Review
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1917
1925
.10.1016/j.rser.2017.06.002
3.
Yang
,
W.
,
Tavner
,
P. J.
,
Crabtree
,
C. J.
,
Feng
,
Y.
, and
Qiu
,
Y.
,
2014
, “
Wind Turbine Condition Monitoring: Technical and Commercial Challenges
,”
Wind Energy
,
17
(
5
), pp.
673
693
.10.1002/we.1508
4.
Zhou
,
P.
, and
Yin
,
P.
,
2019
, “
An Opportunistic Condition-Based Maintenance Strategy for Offshore Wind Farm Based on Predictive Analytics
,”
Renewable Sustainable Energy Rev.
,
109
, pp.
1
9
.10.1016/j.rser.2019.03.049
5.
Al-Solihat
,
M. K.
,
Nahon
,
M.
, and
Behdinan
,
K.
,
2019
, “
Dynamic Modeling and Simulation of a Spar Floating Offshore Wind Turbine With Consideration of the Rotor Speed Variations
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
8
), p.
081014
.10.1115/1.4043104
6.
Yang
,
W.
,
Court
,
R.
, and
Jiang
,
J.
,
2013
, “
Wind Turbine Condition Monitoring by the Approach of Scada Data Analysis
,”
Renewable Energy
,
53
, pp.
365
376
.10.1016/j.renene.2012.11.030
7.
Schlechtingen
,
M.
,
Santos
,
I. F.
, and
Achiche
,
S.
,
2013
, “
Wind Turbine Condition Monitoring Based on Scada Data Using Normal Behavior Models. part 1: System Description
,”
Appl. Soft Comput.
,
13
(
1
), pp.
259
270
.10.1016/j.asoc.2012.08.033
8.
Schlechtingen
,
M.
, and
Santos
,
I. F.
,
2014
, “
Wind Turbine Condition Monitoring Based on Scada Data Using Normal Behavior Models—Part 2: Application Examples
,”
Appl. Soft Comput.
,
14
, pp.
447
460
.10.1016/j.asoc.2013.09.016
9.
Gonzalez
,
E.
,
Stephen
,
B.
,
Infield
,
D.
, and
Melero
,
J. J.
,
2019
, “
Using High-Frequency Scada Data for Wind Turbine Performance Monitoring: A Sensitivity Study
,”
Renewable Energy
,
131
, pp.
841
853
.10.1016/j.renene.2018.07.068
10.
Schlechtingen
,
M.
, and
Santos
,
I. F.
,
2011
, “
Comparative Analysis of Neural Network and Regression Based Condition Monitoring Approaches for Wind Turbine Fault Detection
,”
Mech. Systems Signal Process.
,
25
(
5
), pp.
1849
1875
.10.1016/j.ymssp.2010.12.007
11.
Guo
,
P.
, and
Infield
,
D.
,
2020
, “
Wind Turbine Power Curve Modeling and Monitoring With Gaussian Process and Sprt
,”
IEEE Trans. Sustainable Energy
,
11
(
1
), pp.
107
115
.10.1109/TSTE.2018.2884699
12.
Pandit
,
R. K.
, and
Infield
,
D.
,
2019
, “
Comparative Assessments of Binned and Support Vector Regression-Based Blade Pitch Curve of a Wind Turbine for the Purpose of Condition Monitoring
,”
Int. J. Energy Environ. Eng.
,
10
(
2
), pp.
181
188
.10.1007/s40095-018-0287-3
13.
Astolfi
,
D.
,
Castellani
,
F.
,
Becchetti
,
M.
,
Lombardi
,
A.
, and
Terzi
,
L.
,
2020
, “
Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact
,”
Energies
,
13
(
9
), p.
2351
.10.3390/en13092351
14.
St Martin
,
C. M.
,
Lundquist
,
J. K.
,
Clifton
,
A.
,
Poulos
,
G. S.
, and
Schreck
,
S. J.
,
2017
, “
Atmospheric Turbulence Affects Wind Turbine Nacelle Transfer Functions
,”
Wind Energy Sci.
,
2
(
1
), pp.
295
306
.10.5194/wes-2-295-2017
15.
Carrillo
,
C.
,
Montaño
,
A. O.
,
Cidrás
,
J.
, and
Díaz-Dorado
,
E.
,
2013
, “
Review of Power Curve Modelling for Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
572
581
.10.1016/j.rser.2013.01.012
16.
Wagner
,
R.
,
Cañadillas
,
B.
,
Clifton
,
A.
,
Feeney
,
S.
,
Nygaard
,
N.
,
Poodt
,
M.
,
St Martin
,
C.
,
Tüxen
,
E.
, and
Wagenaar
,
J.
,
2014
, “
Rotor Equivalent Wind Speed for Power Curve Measurement–Comparative Exercise for IEA Wind Annex 32
,”
J. Phys.: Conf. Ser.
,
524
, p.
012108
.10.1088/1742-6596/524/1/012108
17.
Van Sark
,
W. G.
,
Van der Velde
,
H. C.
,
Coelingh
,
J. P.
, and
Bierbooms
,
W. A.
,
2019
, “
Do we Really Need Rotor Equivalent Wind Speed?
,”
Wind Energy
,
22
(
6
), pp.
745
763
.10.1002/we.2319
18.
Pandit
,
R.
, and
Infield
,
D.
,
2018
, “
Comparative Analysis of Binning and Support Vector Regression for Wind Turbine Rotor Speed Based Power Curve Use in Condition Monitoring
,”
IEEE 53rd International Universities Power Engineering Conference (UPEC)
,
Glasgow, UK
, Sept. 4–7, pp.
1
6
.10.1109/UPEC.2018.8542057
19.
Pandit
,
R. K.
,
Infield
,
D.
, and
Carroll
,
J.
,
2019
, “
Incorporating Air Density Into a Gaussian Process Wind Turbine Power Curve Model for Improving Fitting Accuracy
,”
Wind Energy
,
22
(
2
), pp.
302
315
.10.1002/we.2285
20.
Honrubia
,
A.
,
Vigueras-Rodríguez
,
A.
, and
Gómez-Lázaro
,
E.
,
2012
, “
The Influence of Turbulence and Vertical Wind Profile in Wind Turbine Power Curve
,”
Progress in Turbulence and Wind Energy IV
,
Springer
,
Berlin
, pp.
251
254
.
21.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
,
Wiley
,
Hoboken, NJ
.
22.
Wan
,
S.
,
Cheng
,
L.
, and
Sheng
,
X.
,
2015
, “
Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model
,”
Energies
,
8
(
7
), pp.
6286
6301
.10.3390/en8076286
23.
Dai
,
J.
,
Yang
,
X.
,
Hu
,
W.
,
Wen
,
L.
, and
Tan
,
Y.
,
2018
, “
Effect Investigation of Yaw on Wind Turbine Performance Based on Scada Data
,”
Energy
,
149
, pp.
684
696
.10.1016/j.energy.2018.02.059
24.
Byrne
,
R.
,
Astolfi
,
D.
,
Castellani
,
F.
, and
Hewitt
,
N. J.
,
2020
, “
A Study of Wind Turbine Performance Decline With Age Through Operation Data Analysis
,”
Energies
,
13
(
8
), p.
2086
.10.3390/en13082086
25.
Frank
,
L. E.
, and
Friedman
,
J. H.
,
1993
, “
A Statistical View of Some Chemometrics Regression Tools
,”
Technometrics
,
35
(
2
), pp.
109
135
.10.1080/00401706.1993.10485033
26.
Vapnik
,
V.
,
2013
,
The Nature of Statistical Learning Theory
,
Springer Science & Business Media
,
Berlin
.
27.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2018
, “
Wind Turbine Power Curve Upgrades
,”
Energies
,
11
(
5
), p.
1300
.10.3390/en11051300
28.
Astolfi
,
D.
,
Castellani
,
F.
,
Fravolini
,
M. L.
,
Cascianelli
,
S.
, and
Terzi
,
L.
,
2019
, “
Precision Computation of Wind Turbine Power Upgrades: An Aerodynamic and Control Optimization Test Case
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051205
.10.1115/1.4042450
You do not currently have access to this content.