Abstract

An optimal model-free controller and a linear controller are designed and applied to a horizontal magnetic micromanipulator for controlling microparticles in a liquid environment. An input–output relation based model for the magnetic micromanipulator is obtained, verified, and used in the analysis of controllers. A model-free linear controller is designed using the offset current approach. An optimal nonlinear controller based on Karush–Kuhn–Tucker conditions is designed and then modified to produce smooth control signals. Experimental results are provided to show the efficiency and feasibility of the proposed controllers. The model-free controllers yield short settling time and zero steady-state error in the control of magnetic microparticles.

References

1.
Jung
,
Y.
,
Choi
,
Y.
,
Han
,
K.-H.
, and
Frazier
,
A. B.
,
2010
, “
Six-Stage Cascade Paramagnetic Mode Magnetophoretic Separation System for Human Blood Samples
,”
Biomed. Microdev.
,
12
(
4
), pp.
637
645
.10.1007/s10544-010-9416-3
2.
Kong
,
T. F.
,
E
,
H. S.
,
Sugiarto
,
H. S.
,
Liew
,
H. F.
,
Wang
,
X.
,
Lew
,
W. S.
,
Nguyen
,
N.-T.
, and
Chen
,
Y.
,
2011
, “
An Efficient Microfluidic Sorter: Implementation of Double Meandering Micro Striplines for Magnetic Particles Switching
,”
Microfluid. Nanofluid.
,
10
(
5
), pp.
1069
1078
.10.1007/s10404-010-0735-8
3.
Plouffe
,
B. D.
,
Murthy
,
S. K.
, and
Lewis
,
L. H.
,
2015
, “
Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment: A Review
,”
Rep. Prog. Phys.
,
78
(
1
), p.
016601
.10.1088/0034-4885/78/1/016601
4.
Sitti
,
M.
,
2019
, “
Robotic Collectives Inspired by Biological Cells
,”
Nature
,
567
(
7748
), pp.
314
315
.10.1038/d41586-019-00839-x
5.
Ceylan
,
H.
,
Yasa
,
I. C.
,
Yasa
,
O.
,
Tabak
,
A. F.
,
Giltinan
,
J.
, and
Sitti
,
M.
,
2019
, “
3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release
,”
ACS Nano
,
13
(
3
), pp.
3353
3362
.10.1021/acsnano.8b09233
6.
Wang
,
X.
,
Chen
,
X.-Z.
,
Alcântara
,
C. C. J.
,
Sevim
,
S.
,
Hoop
,
M.
,
Terzopoulou
,
A.
,
de Marco
,
C.
,
Hu
,
C.
,
de Mello
,
A. J.
,
Falcaro
,
P.
,
Furukawa
,
S.
,
Nelson
,
B. J.
,
Puigmartí‐Luis
,
J.
, and
Pané
,
S.
,
2019
, “
MOFBOTS: Metal–Organic-Framework-Based Biomedical Microrobots
,”
Adv. Mater.
,
31
(
27
), p.
1901592
.10.1002/adma.201901592
7.
Fuller
,
D. N.
,
Gemmen
,
G. J.
,
Rickgauer
,
J. P.
,
Dupont
,
A.
,
Millin
,
R.
,
Recouvreux
,
P.
, and
Smith
,
D. E.
,
2006
, “
A General Method for Manipulating DNA Sequences From Any Organism With Optical Tweezers
,”
Nucl. Acids Res.
,
34
(
2
), p.
e15
.10.1093/nar/gnj016
8.
Li
,
M.
,
Xiao
,
X.
,
Liu
,
L.
,
Xi
,
N.
,
Wang
,
Y.
,
Dong
,
Z.
, and
Zhang
,
W.
,
2013
, “
Atomic Force Microscopy Study of the Antigen-Antibody Binding Force on Patient Cancer Cells Based on ROR1 Fluorescence Recognition
,”
J. Mol. Recognit.
,
26
(
9
), pp.
432
438
.10.1002/jmr.2287
9.
Pelz
,
B.
,
Žoldák
,
G.
,
Zeller
,
F.
,
Zacharias
,
M.
, and
Rief
,
M.
,
2016
, “
Subnanometre Enzyme Mechanics Probed by Single-Molecule Force Spectroscopy
,”
Nat. Commun.
,
7
(
1
), pp.
1
9
.10.1038/ncomms10848
10.
Bessalova
,
V.
,
Perov
,
N.
, and
Rodionova
,
V.
,
2016
, “
New Approaches in the Design of Magnetic Tweezers–Current Magnetic Tweezers
,”
J. Magn. Magn. Mater.
,
415
, pp.
66
71
.10.1016/j.jmmm.2016.03.038
11.
Neuman
,
K. C.
, and
Nagy
,
A.
,
2008
, “
Single-Molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy
,”
Nat. Methods
,
5
(
6
), pp.
491
505
.10.1038/nmeth.1218
12.
Liu
,
Y.-L.
,
Chen
,
D.
,
Shang
,
P.
, and
Yin
,
D.-C.
,
2019
, “
A Review of Magnet Systems for Targeted Drug Delivery
,”
J. Controlled Release
,
302
, pp.
90
104
.10.1016/j.jconrel.2019.03.031
13.
Fabian
,
R.
,
Tyson
,
C.
,
Tuma
,
P. L.
,
Pegg
,
I.
, and
Sarkar
,
A.
,
2018
, “
A Horizontal Magnetic Tweezers and Its Use for Studying Single DNA Molecules
,”
Micromachines
,
9
(
4
), pp.
188
200
.10.3390/mi9040188
14.
Kriegel
,
F.
,
Ermann
,
N.
, and
Lipfert
,
J.
,
2017
, “
Probing the Mechanical Properties, Conformational Changes, and Interactions of Nucleic Acids With Magnetic Tweezers
,”
J. Struct. Biol.
,
197
(
1
), pp.
26
36
.10.1016/j.jsb.2016.06.022
15.
Ghanbari
,
A.
,
Chang
,
P. H.
,
Nelson
,
B. J.
, and
Choi
,
H.
,
2014
, “
Magnetic Actuation of a Cylindrical Microrobot Using Time-Delay-Estimation Closed-Loop Control: Modeling and Experiments
,”
Smart Mater. Struct.
,
23
(
3
), p.
035013
.10.1088/0964-1726/23/3/035013
16.
Diller
,
E.
,
Giltinan
,
J.
,
Lum
,
G. Z.
,
Ye
,
Z.
, and
Sitti
,
M.
,
2016
, “
Six-Degree-of-Freedom Magnetic Actuation for Wireless Microrobotics
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
114
128
.10.1177/0278364915583539
17.
Johnson
,
K. C.
,
Clemmens
,
E.
,
Mahmoud
,
H.
,
Kirkpatrick
,
R.
,
Vizcarra
,
J. C.
, and
Thomas
,
W. E.
,
2017
, “
A Multiplexed Magnetic Tweezer With Precision Particle Tracking and Bi-Directional Force Control
,”
J. Biol. Eng.
,
11
(
1
), p.
47
.10.1186/s13036-017-0091-2
18.
Jiang
,
C.
,
Lionberger
,
T. A.
,
Wiener
,
D. M.
, and
Meyhofer
,
E.
,
2016
, “
Electromagnetic Tweezers With Independent Force and Torque Control
,”
Rev. Sci. Instrum.
,
87
(
8
), p.
084304
.10.1063/1.4960811
19.
Te Velthuis
,
A. J. W.
,
Kerssemakers
,
J. W. J.
,
Lipfert
,
J.
, and
Dekker
,
N. H.
,
2010
, “
Quantitative Guidelines for Force Calibration Through Spectral Analysis of Magnetic Tweezers Data
,”
Biophys. J.
,
99
(
4
), pp.
1292
1302
.10.1016/j.bpj.2010.06.008
20.
Khamesee
,
M. B.
,
Kato
,
N.
,
Nomura
,
Y.
, and
Nakamura
,
T.
,
2002
, “
Design and Control of a Microrobotic System Using Magnetic Levitation
,”
IEEE/ASME Trans. Mechatronics
,
7
(
1
), pp.
1
14
.10.1109/3516.990882
21.
Steager
,
E. B.
,
Sakar
,
M. S.
,
Magee
,
C.
,
Kennedy
,
M.
,
Cowley
,
A.
, and
Kumar
,
V.
,
2013
, “
Automated Biomanipulation of Single Cells Using Magnetic Microrobots
,”
Int. J. Rob. Res.
,
32
(
3
), pp.
346
359
.10.1177/0278364912472381
22.
Long
,
F.
,
Matsuura
,
D.
, and
Menq
,
C. H.
,
2016
, “
Actively Controlled Hexapole Electromagnetic Actuating System Enabling 3-D Force Manipulation in Aqueous Solutions
,”
IEEE/ASME Trans. Mechatronics
,
21
(
3
), pp.
1540
1551
.10.1109/TMECH.2015.2503274
23.
Arcese
,
L.
,
Fruchard
,
M.
, and
Ferreira
,
A.
,
2013
, “
Adaptive Controller and Observer for a Magnetic Microrobot
,”
IEEE Trans. Rob.
,
29
(
4
), pp.
1060
1067
.10.1109/TRO.2013.2257581
24.
Ma
,
W.
,
Niu
,
F.
,
Li
,
X.
,
Ji
,
H.
,
Yang
,
J.
, and
Sun
,
D.
,
2015
, “
Modeling and Closed-Loop Control of Electromagnetic Manipulation of a Microparticle
,” IEEE International Conference on Robotics and Automation (
ICRA
), Seattle, WA, May 26–30, pp.
143
148
.10.1109/ICRA.2015.7138992
25.
Mellal
,
L.
,
Folio
,
D.
,
Belharet
,
K.
, and
Ferreira
,
A.
,
2016
, “
Optimal Control of Multiple Magnetic Microbeads Navigating in Microfluidic Channels
,” IEEE International Conference on Robotics and Automation (
ICRA
), Stockholm, Sweden, May 16–21, pp.
1921
1926
.10.1109/ICRA.2016.7487338
26.
Piepmeier
,
J. A.
,
Firebaugh
,
S.
, and
Olsen
,
C. S.
,
2014
, “
Uncalibrated Visual Servo Control of Magnetically Actuated Microrobots in a Fluid Environment
,”
Micromachines
,
5
(
4
), pp.
797
813
.10.3390/mi5040797
27.
Marino
,
H.
,
Bergeles
,
C.
, and
Nelson
,
B. J.
,
2014
, “
Robust Electromagnetic Control of Microrobots Under Force and Localization Uncertainties
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
1
), pp.
310
316
.10.1109/TASE.2013.2265135
28.
Zhang
,
Z.
,
Long
,
F.
, and
Menq
,
C.
,
2013
, “
Three-Dimensional Visual Servo Control of a Magnetically Propelled Microscopic Bead
,”
IEEE Trans. Rob.
,
29
(
2
), pp.
373
382
.10.1109/TRO.2012.2229671
29.
Kim
,
J.
,
Choi
,
H.
, and
Kim
,
J.
,
2019
, “
A Robust Motion Control With Antiwindup Scheme for Electromagnetic Actuated Microrobot Using Time-Delay Estimation
,”
IEEE/ASME Trans. Mechatronics
,
24
(
3
), pp.
1096
1105
.10.1109/TMECH.2019.2907145
30.
Ablay
,
G.
,
2015
, “
Variable Structure Controllers for Unstable Processes
,”
J. Process Control
,
32
, pp.
10
15
.10.1016/j.jprocont.2015.04.017
31.
Fliess
,
M.
, and
Join
,
C.
,
2013
, “
Model-Free Control
,”
Int. J. Control
,
86
(
12
), pp.
2228
2252
.10.1080/00207179.2013.810345
32.
Ablay
,
G.
,
Böyük
,
M.
, and
İçöz
,
K.
,
2019
, “
Design, Modeling, and Control of a Horizontal Magnetic Micromanipulator
,”
Trans. Inst. Meas. Control
,
41
(
11
), pp.
3190
3198
.10.1177/0142331218824392
33.
Lewis
,
F. L.
,
Vrabie
,
D. L.
, and
Syrmos
,
V. L.
,
2012
,
Optimal Control
,
Wiley
,
Hoboken, NJ
.
34.
Csorvási
,
G.
, and
Vajk
,
I.
,
2020
, “
Sequential Time-Optimal Algorithm for Extended Path Tracking Problem
,”
ASME J. Dyn. Sys., Meas., Control
, 142(8), p. 081005.10.1115/1.4046614
35.
Ablay
,
G.
,
2015
, “
Robust Estimator-Based Optimal Control Designs for U-Tube Steam Generators
,”
Trans. Inst. Meas. Control
,
37
(
5
), pp.
636
644
.10.1177/0142331214534292
36.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
37.
Rahman
,
M.
,
Saei
,
A. A.
,
Amiri
,
H.
, and
Mahmoudi
,
M.
,
2015
, “
Biomedical Applications of Superparamagnetic Nanoparticles in Molecular Scale
,”
Curr. Org. Chem.
,
19
(
11
), pp.
982
990
.10.2174/138527281911150610100548
38.
Hejazian
,
M.
,
Li
,
W.
, and
Nguyen
,
N.-T.
,
2015
, “
Lab on a Chip for Continuous-Flow Magnetic Cell Separation
,”
Lab Chip
,
15
(
4
), pp.
959
970
.10.1039/C4LC01422G
39.
Happel
,
J.
, and
Brenner
,
H.
,
1983
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
,
Springer
,
The Hague, The Netherlands
.
40.
Kim
,
M.
, and
Zydney
,
A. L.
,
2004
, “
Effect of Electrostatic, Hydrodynamic, and Brownian Forces on Particle Trajectories and Sieving in Normal Flow Filtration
,”
J. Colloid Interface Sci.
,
269
(
2
), pp.
425
431
.10.1016/j.jcis.2003.08.004
41.
Ablay
,
G.
,
2014
, “
Coefficient Ratios Based Robust Sliding Surface and Integral Sliding Mode Control Designs With Optimal Transient Responses
,”
IET Control Theory Appl.
,
8
(
17
), pp.
1896
1904
.10.1049/iet-cta.2014.0138
You do not currently have access to this content.