Abstract

A high-precision additive manufacturing (AM) process, powder bed fusion (PBF) has enabled unmatched agile manufacturing of a wide range of products from engine components to medical implants. While finite element modeling and closed-loop control have been identified key for predicting and engineering part qualities in PBF, existing results in each realm are developed in opposite computational architectures wildly different in time scale. This paper builds a first-instance closed-loop simulation framework by integrating high-fidelity finite element modeling with feedback controls originally developed for general mechatronics systems. By utilizing the output signals (e.g., melt pool width) retrieved from the finite element model (FEM) to update directly the control signals (e.g., laser power) sent to the model, the proposed closed-loop framework enables testing the limits of advanced controls in PBF and surveying the parameter space fully to generate more predictable part qualities. Along the course of formulating the framework, we verify the FEM by comparing its results with experimental and analytical solutions and then use the FEM to understand the melt-pool evolution induced by the in- and cross-layer thermomechanical interactions. From there, we build a repetitive control (RC) algorithm to attenuate variations of the melt pool width.

References

1.
Wang
,
D.
, and
Chen
,
X.
,
2018
, “
A Multirate Fractional-Order Repetitive Control for Laser-Based Additive Manufacturing
,”
Control Eng. Pract.
,
77
, pp.
41
51
.10.1016/j.conengprac.2018.05.001
2.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Proceedings of the Third International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
, Sept. 24–29, pp.
521
527
.
3.
Seyda
,
V.
,
Kaufmann
,
N.
, and
Emmelmann
,
C.
,
2012
, “
Investigation of Aging Processes of Ti–6Al–4V Powder Material in Laser Melting
,”
Phys. Procedia
,
39
, pp.
425
431
.10.1016/j.phpro.2012.10.057
4.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti–6Al–4V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
73
90
.10.1016/j.ijmachtools.2017.04.007
5.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
, and
Everson
,
R.
,
2013
, “
Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-Support in Selective Laser Melting
,”
Mater. Des. (1980–2015)
,
52
, pp.
638
647
.10.1016/j.matdes.2013.05.070
6.
Foroozmehr
,
A.
,
Badrossamay
,
M.
,
Foroozmehr
,
E.
, and
Golabi
,
S.
,
2016
, “
Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed
,”
Mater. Des.
,
89
, pp.
255
263
.10.1016/j.matdes.2015.10.002
7.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.10.1016/j.actamat.2016.02.014
8.
Debroy
,
T.
,
Zhang
,
W.
,
Turner
,
J.
, and
Babu
,
S. S.
,
2017
, “
Building Digital Twins of 3D Printing Machines
,”
Scr. Mater.
,
135
, pp.
119
124
.10.1016/j.scriptamat.2016.12.005
9.
Craeghs
,
T.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J.-P.
,
2010
, “
Feedback Control of Layerwise Laser Melting Using Optical Sensors
,”
Phys. Procedia
,
5
, pp.
505
514
.10.1016/j.phpro.2010.08.078
10.
Zheng
,
C.
,
Wen
,
J. T.
, and
Diagne
,
M.
,
2020
, “
Distributed Temperature Control in Laser-Based Manufacturing
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
6
), p.
061001
.10.1115/1.4046154
11.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
.10.1109/TCST.2010.2093901
12.
Cao
,
X.
, and
Ayalew
,
B.
,
2015
, “
Control-Oriented Mimo Modeling of Laser-Aided Powder Deposition Processes
,”
American Control Conference (ACC)
,
Chicago, IL
, July 1–7, pp.
3637
3642
.10.1109/ACC.2015.7171895
13.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2014
, “
Repetitive Process Control of Laser Metal Deposition
,”
ASME Paper No. DSCC2014-6173
.10.1115/DSCC2014-6173
14.
Fathi
,
A.
,
Khajepour
,
A.
,
Durali
,
M.
, and
Toyserkani
,
E.
,
2008
, “
Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031003
.10.1115/1.2823085
15.
Vlasea
,
M. L.
,
Lane
,
B.
,
Lopez
,
F.
,
Mekhontsev
,
S.
, and
Donmez
,
A.
,
2015
, “
Development of Powder Bed Fusion Additive Manufacturing Test Bed for Enhanced Real-Time Process Control
,”
Proceedings of the International Solid Freeform Fabrication Symposium
,
Austin, TX
, Aug. 10–12, pp.
13
15
.https://www.researchgate.net/publication/282219522_Development_of_Powder_Bed_Fusion_Additive_Manufacturing_Test_Bed_for_Enhanced_Real-Time_Process_Control
16.
Fleming
,
T. G.
,
Nestor
,
S. G.
,
Allen
,
T. R.
,
Boukhaled
,
M. A.
,
Smith
,
N. J.
, and
Fraser
,
J. M.
,
2020
, “
Tracking and Controlling the Morphology Evolution of 3d Powder-Bed Fusion In Situ Using Inline Coherent Imaging
,”
Addit. Manuf.
,
32
, p.
100978
.10.1016/j.addma.2019.100978
17.
Hofman
,
J.
,
Pathiraj
,
B.
,
Van Dijk
,
J.
,
de Lange
,
D.
, and
Meijer
,
J.
,
2012
, “
A Camera Based Feedback Control Strategy for the Laser Cladding Process
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2455
2462
.10.1016/j.jmatprotec.2012.06.027
18.
Salehi
,
D.
, and
Brandt
,
M.
,
2006
, “
Melt Pool Temperature Control Using Labview in nd: Yag Laser Blown Powder Cladding Process
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3–4
), pp.
273
278
.10.1007/s00170-005-2514-3
19.
Fathi
,
A.
,
Khajepour
,
A.
,
Toyserkani
,
E.
, and
Durali
,
M.
,
2007
, “
Clad Height Control in Laser Solid Freeform Fabrication Using a Feedforward Pid Controller
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3–4
), pp.
280
292
.10.1007/s00170-006-0721-1
20.
Tang
,
L.
, and
Landers
,
R. G.
,
2011
, “
Layer-to-Layer Height Control for Laser Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021009
.10.1115/1.4003691
21.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
318
332
.10.1016/j.addma.2018.03.022
22.
Mukherjee
,
T.
,
Wei
,
H.
,
De
,
A.
, and
DebRoy
,
T.
,
2018
, “
Heat and Fluid Flow in Additive Manufacturing—Part I: Modeling of Powder Bed Fusion
,”
Comput. Mater. Sci.
,
150
, pp.
304
313
.10.1016/j.commatsci.2018.04.022
23.
Kannatey-Asibu
,
E.
, Jr
,
2009
,
Principles of Laser Materials Processing
, Vol.
4
,
Wiley
,
Hoboken, NJ
.
24.
Arce
,
A. N.
,
2012
,
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys
,
North Carolina State University
,
Raleigh, NC
.
25.
Karayagiz
,
K.
,
Elwany
,
A.
,
Tapia
,
G.
,
Franco
,
B.
,
Johnson
,
L.
,
Ma
,
J.
,
Karaman
,
I.
, and
Arróyave
,
R.
,
2019
, “
Numerical and Experimental Analysis of Heat Distribution in the Laser Powder Bed Fusion of Ti–6Al–4V
,”
IISE Trans.
,
51
(
2
), pp.
136
152
.10.1080/24725854.2018.1461964
26.
Yin
,
J.
,
Zhu
,
H.
,
Ke
,
L.
,
Lei
,
W.
,
Dai
,
C.
, and
Zuo
,
D.
,
2012
, “
Simulation of Temperature Distribution in Single Metallic Powder Layer for Laser Micro-Sintering
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
333
339
.10.1016/j.commatsci.2011.09.012
27.
Yadroitsev
,
I.
,
2009
,
Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders
,
LAP LAMBERT Academic Publishing
,
Riga, German
.
28.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
29.
Cepeda-Jiménez
,
C.
,
Potenza
,
F.
,
Magalini
,
E.
,
Luchin
,
V.
,
Molinari
,
A.
, and
Pérez-Prado
,
M.
,
2020
, “
Effect of Energy Density on the Microstructure and Texture Evolution of Ti–6Al–4V Manufactured by Laser Powder Bed Fusion
,”
Mater. Charact.
,
163
, p.
110238
.10.1016/j.matchar.2020.110238
30.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of ti–6al–4v
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.10.1016/j.actamat.2010.02.004
31.
Majumdar
,
T.
,
Bazin
,
T.
,
Massahud Carvalho Ribeiro
,
E.
,
Frith
,
J. E.
, and
Birbilis
,
N.
,
2019
, “
Understanding the Effects of PBF Process Parameter Interplay on Ti–6Al–4V Surface Properties
,”
PloS One
,
14
(
8
), p.
e0221198
.10.1371/journal.pone.0221198
32.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
, and
Yadroitsava
,
I.
,
2014
, “
Selective Laser Melting of ti6al4v Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution
,”
J. Alloys Compd.
,
583
, pp.
404
409
.10.1016/j.jallcom.2013.08.183
33.
Dunbar
,
A. J.
,
Denlinger
,
E. R.
,
Gouge
,
M. F.
,
Simpson
,
T. W.
, and
Michaleris
,
P.
,
2017
, “
Comparisons of Laser Powder Bed Fusion Additive Manufacturing Builds Through Experimental in Situ Distortion and Temperature Measurements
,”
Addit. Manuf.
,
15
, pp.
57
65
.10.1016/j.addma.2017.03.003
34.
Chen
,
X.
, and
Tomizuka
,
M.
,
2014
, “
New Repetitive Control With Improved Steady-State Performance and Accelerated Transient
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
664
675
.10.1109/TCST.2013.2253102
35.
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
Additive Manufacturing of ti6al4v Alloy: A Review
,”
Mater. Des.
,
164
, p.
107552
.10.1016/j.matdes.2018.107552
36.
Inoue
,
T.
,
Nakano
,
M.
,
Kubo
,
T.
,
Matsumoto
,
S.
, and
Baba
,
H.
,
1981
, “
High Accuracy Control of a Proton Synchrotron Magnet Power Supply
,”
IFAC Proc. Volumes
,
14
(
2
), pp.
3137
3142
.10.1016/S1474-6670(17)63938-7
You do not currently have access to this content.