Abstract

This study focuses on the measured changes in dynamic behavior exhibited by eight synthetic vocal fold models with varying mechanical properties. Uniaxial tensile testing was conducted to determine changes in mechanical properties between materials made from silicone rubber and polydimethylsiloxane with varying mixing ratios. The results of the mechanical testing showed that the elastic modulus, E, varied from 20.6 to 437.4 kPa, the measured Poisson ratios, ν, spanned the range of 0.43–0.48, and the density, ρVF, varied from 0.86 to 1.02 g/cm3 across the eight samples. Vocal fold models were dynamically tested using a custom-built experimental setup that supplied a heated and humidified airflow to the synthetic vocal folds. The resulting sounds were recorded and analyzed to identify the change in fundamental frequency which spanned 66.8 to 342.6 Hz across the eight samples. In addition, a mathematical aeroelastic model of phonation was implemented to further investigate the relationship between the mechanical properties and phonation frequency. Finally, a proof-of-concept magnetic actuation method was demonstrated using magnetic elastomers to deform the synthetic vocal folds through the use of an electromagnet.

References

References
1.
van Leer
,
E.
, and
Porcaro
,
N.
,
2016
, “
Pervasive Diagnosis and Rehabilitation of Voice Disorders: Current Status and Future Directions
,”
Proceedings of the 10th EAI International Conference on Pervasive Computing Technologies for Healthcare
,
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
, Cancun, Mexico, May, pp.
295
299
.
2.
Bhattacharyya
,
N.
,
2015
, “
The Prevalence of Pediatric Voice and Swallowing Problems in the United s Tates
,”
Laryngoscope
,
125
(
3
), pp.
746
750
.10.1002/lary.24931
3.
Hahn
,
M. S.
,
Kobler
,
J. B.
,
Zeitels
,
S. M.
, and
Langer
,
R.
,
2006
, “
Quantitative and Comparative Studies of the Vocal Fold Extracellular Matrix ii: Collagen
,”
Ann. Otol. Rhinol. Laryngol.
,
115
(
3
), pp.
225
232
.10.1177/000348940611500311
4.
Hahn
,
M. S.
,
Kobler
,
J. B.
,
Starcher
,
B. C.
,
Zeitels
,
S. M.
, and
Langer
,
R.
,
2006
, “
Quantitative and Comparative Studies of the Vocal Fold Extracellular Matrix I: Elastic Fibers and Hyaluronic Acid
,”
Ann. Otol. Rhinol. Laryngol.
,
115
(
2
), pp.
156
164
.10.1177/000348940611500213
5.
Hirano
,
M.
,
1974
, “
Morphological Structure of the Vocal Cord as a Vibrator and Its Variations
,”
Folia Phoniatrica Logopaedica
,
26
(
2
), pp.
89
94
.10.1159/000263771
6.
Slavit
,
D. H.
,
Lipton
,
R. J.
, and
McCaffrey
,
T. V.
,
1990
, “
Glottographic Analysis of Phonation in the Excised Canine Larynx
,”
Ann. Otol. Rhinol. Laryngol.
,
99
(
5
), pp.
396
402
.10.1177/000348949009900514
7.
Verdolini
,
K.
,
Chan
,
R.
,
Titze
,
I. R.
,
Hess
,
M.
, and
Bierhals
,
W.
,
1998
, “
Correspondence of Electroglottographic Closed Quotient to Vocal Fold Impact Stress in Excised Canine Larynges
,”
J. Voice
,
12
(
4
), pp.
415
423
.10.1016/S0892-1997(98)80050-7
8.
Alipour
,
F.
, and
Jaiswal
,
S.
,
2009
, “
Glottal Airflow Resistance in Excised Pig, Sheep, and Cow Larynges
,”
J. Voice
,
23
(
1
), pp.
40
50
.10.1016/j.jvoice.2007.03.007
9.
Alipour
,
F.
, and
Jaiswal
,
S.
,
2008
, “
Phonatory Characteristics of Excised Pig, Sheep, and Cow Larynges
,”
J. Acoust. Soc. Am.
,
123
(
6
), pp.
4572
4581
.10.1121/1.2908289
10.
Bakhshaee
,
H.
,
Young
,
J.
,
Yang
,
J. C.
,
Mongeau
,
L.
, and
Miri
,
A. K.
,
2013
, “
Determination of Strain Field on the Superior Surface of Excised Larynx Vocal Folds Using Dic
,”
J. Voice
,
27
(
6
), pp.
659
667
.10.1016/j.jvoice.2013.05.009
11.
Thomson
,
S. L.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
,
2005
, “
Aerodynamic Transfer of Energy to the Vocal Folds
,”
J. Acoust. Soc. Am.
,
118
(
3
), pp.
1689
1700
.10.1121/1.2000787
12.
Titze
,
I. R.
,
Schmidt
,
S. S.
, and
Titze
,
M. R.
,
1995
, “
Phonation Threshold Pressure in a Physical Model of the Vocal Fold Mucosa
,”
J. Acoust. Soc. Am.
,
97
(
5
), pp.
3080
3084
.10.1121/1.411870
13.
Murray
,
P. R.
, and
Thomson
,
S. L.
,
2011
, “
Synthetic, Multi-Layer, Self-Oscillating Vocal Fold Model Fabrication
,”
J. Visual. Exp.
,
58
, p.
e3498
.
14.
Burks
,
G.
,
De Vita
,
R.
, and
Leonessa
,
A.
,
2018
, “
Characterization of the Continuous Elastic Parameters of Porcine Vocal Folds
,”
J. Voice
,
34
(
1
), pp.
1
8
.10.1016/j.jvoice.2018.09.007
15.
Alipour
,
F.
, and
Vigmostad
,
S.
,
2012
, “
Measurement of Vocal Folds Elastic Properties for Continuum Modeling
,”
J. Voice
,
26
(
6
), pp.
816.e21
816.e29
.10.1016/j.jvoice.2012.04.010
16.
Alipour
,
F.
,
Jaiswal
,
S.
, and
Vigmostad
,
S.
,
2011
, “
Vocal Fold Elasticity in the Pig, Sheep, and Cow Larynges
,”
J. Voice
,
25
(
2
), pp.
130
136
.10.1016/j.jvoice.2009.09.002
17.
Benjamin
,
B. J.
,
1981
, “
Frequency Variability in the Aged Voice
,”
J. Gerontol.
,
36
(
6
), pp.
722
726
.10.1093/geronj/36.6.722
18.
Scherer
,
R. C.
,
Titze
,
I. R.
, and
Curtis
,
J. F.
,
1983
, “
Pressure-Flow Relationships in Two Models of the Larynx Having Rectangular Glottal Shapes
,”
J. Acoust. Soc. Am.
,
73
(
2
), pp.
668
676
.10.1121/1.388959
19.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
,
2006
, “
Aerodynamically and Acoustically Driven Modes of Vibration in a Physical Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
120
(
5
), pp.
2841
2849
.10.1121/1.2354025
20.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
,
2006
, “
The Influence of Subglottal Acoustics on Laboratory Models of Phonation
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1558
1569
.10.1121/1.2225682
21.
Shaw
,
S. M.
,
Thomson
,
S. L.
,
Dromey
,
C.
, and
Smith
,
S.
,
2012
, “
Frequency Response of Synthetic Vocal Fold Models With Linear and Nonlinear Material Properties
,”
J. Speech Lang. Hear. Res.
,
55
(
5
), pp.
1395
1406
.10.1044/1092-4388(2012/11-0153)
22.
Stevens
,
K. A.
,
Thomson
,
S. L.
,
Jetté
,
M. E.
, and
Thibeault
,
S. L.
,
2016
, “
Quantification of Porcine Vocal Fold Geometry
,”
J. Voice
,
30
(
4
), pp.
416
426
.10.1016/j.jvoice.2015.06.009
23.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
,
2007
, “
Physical Mechanisms of Phonation Onset: A Linear Stability Analysis of an Aeroelastic Continuum Model of Phonation
,”
J. Acoust. Soc. Am.
,
122
(
4
), pp.
2279
2295
.10.1121/1.2773949
24.
Chan
,
R. W.
, and
Titze
,
I. R.
,
1999
, “
Viscoelastic Shear Properties of Human Vocal Fold Mucosa: Measurement Methodology and Empirical Results
,”
J. Acoust. Soc. Am.
,
106
(
4
), pp.
2008
2021
.10.1121/1.427947
25.
Bloomfield
,
L. A.
,
2014
, “
Viscoelastic Silicon Rubber Compositions
,” U.S. Patent 8,785,507.
26.
Murray
,
P. R.
,
Thomson
,
S. L.
, and
Smith
,
M. E.
,
2014
, “
A Synthetic, Self-Oscillating Vocal Fold Model Platform for Studying Augmentation Injection
,”
J. Voice
,
28
(
2
), pp.
133
143
.10.1016/j.jvoice.2013.10.014
You do not currently have access to this content.