Abstract

The paper proposes the digital redesign technique called plant-input-mapping (PIM) method for a feedback system described in the state-space form. The PIM method, which was originally presented in the transfer function form, focuses on the plant input signal via the plant input transfer function (PITF) and discretizes it so as to satisfy the control zero principle in the resulting discrete-time closed-loop system, which leads to guaranteeing the closed-loop stability for any nonpathological sampling interval. In accordance with this approach, the proposed PIM method focuses on the control zeros included in the plant input signal. The paper proves that the matched-pole-zero discrete-time model of the plant input state-equation (PISE) satisfies the control zero principle with the step-invariant model of the plant. Then, when the matched-pole-zero model is set as the target of model matching, the parameters of the state-space PIM controller employing the observer-based dynamic state-feedback can systematically be determined from the underlying continuous-time closed-loop system with guaranteed stability. This discretization process can immediately be applied to a state-feedback system and a class of multi-input multi-output systems without any modification, which cannot be discretized by the conventional PIM methods. The discretization performance of the proposed PIM method is evaluated through illustrative examples with comparable digital redesign methods, which reveal that the proposed method performs a good reproduction of the characteristics of the underlying closed-loop system.

References

1.
Wittenmark
,
B.
,
Aström
,
K. J.
, and
Årzén
,
K.
,
2002
, “
Computer Control: An Overview
,”
IFAC Professional Brief
, pp.
1
93
.
2.
Yamamoto
,
Y.
,
1990
, “
New Approach to Sampled-Data Control Systems-a Function Space Method
,”
29th IEEE Conference on Decision and Control
,
Honolulu, HI
, Dec. 5–7, pp.
1882
1887
.10.1109/CDC.1990.203946
3.
Whitbeck
,
R.
, and
Hofmannf
,
L.
,
1978
, “
Digital Control Law Synthesis in the w' Domain
,”
J. Guid. Control Dyn.
,
1
(
5
), pp.
319
326
.10.2514/3.55787
4.
Middleton
,
R.
, and
Goodwin
,
G.
,
1986
, “
Improved Finite Word Length Characteristics in Digital Control Using Delta Operators
,”
IEEE Trans. Autom. Control
,
31
(
11
), pp.
1015
1021
.10.1109/TAC.1986.1104162
5.
Tabak
,
D.
,
1971
, “
Digitalisation of Control Systems
,”
Comput. Aided Des.
,
3
(
2
), pp.
13
18
.10.1016/0010-4485(71)90063-7
6.
Rattan
,
K. S.
,
1984
, “
Digitalization of Existing Continuous Control Systems
,”
IEEE Trans. Autom. Control
,
29
(
3
), pp.
282
285
.10.1109/TAC.1984.1103507
7.
Yackel
,
R.
,
Kuo
,
B.
, and
Singh
,
G.
,
1974
, “
Digital Redesign of Continuous Systems by Matching of States at Multiple Sampling Periods
,”
Automatica
,
10
(
1
), pp.
105
111
.10.1016/0005-1098(74)90013-2
8.
Kennedy
,
R.
, and
Evans
,
R.
,
1990
, “
Digital Redesign of a Continuous Controller Based on Closed Loop Performance
,”
Proc. the 29th IEEE Conference on Decision and Control
,
Honolulu, HI
, Dec. 5–7, pp.
1898
1901
.10.1109/CDC.1990.203950
9.
Keller
,
J.
, and
Anderson
,
B.
,
1992
, “
A New Approach to the Discretization of Continuous-Time Controllers
,”
IEEE Trans. Autom. Control
,
37
(
2
), pp.
214
223
.10.1109/9.121622
10.
Zhang
,
G.
,
Chen
,
X.
, and
Chen
,
T.
,
2009
, “
Digital Redesign Via the Generalised Bilinear Transformation
,”
Int. J. Control
,
82
(
4
), pp.
741
754
.10.1080/00207170802247728
11.
Polyakov
,
K.
,
Rosenwasser
,
E.
, and
Lampe
,
B.
,
2009
, “
Optimization-Based Digital Redesign of Analogue Controllers
,”
Proc. the 48th IEEE Conference on Decision and Control (CDC) Held Jointly With 2009 28th Chinese Control Conference
,
Shanghai, China
, Dec. 15–18, pp.
8154
8159
.10.1109/CDC.2009.5400456
12.
Nešić
,
D.
, and
Grüne
,
L.
,
2005
, “
Lyapunov-Based Continuous-Time Nonlinear Controller Redesign for Sampled-Data Implementation
,”
Automatica
,
41
(
7
), pp.
1143
1156
.10.1016/j.automatica.2005.03.001
13.
Kosugi
,
N.
, and
Suyama
,
K.
,
2013
, “
Digital Redesign of Infinite-Dimensional Controllers Based on Numerical Integration of New Representation
,”
Syst. Control Lett.
,
62
(
7
), pp.
531
538
.10.1016/j.sysconle.2013.03.007
14.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
,
1980
,
Digital Control of Dynamic Systems
, 2nd ed,
Addison-Wesley Pub
,
Boston, MA
.
15.
Mori
,
T.
,
Nikiforuk
,
P.
,
Gupta
,
M.
, and
Hori
,
N.
,
1989
, “
A Class of Discrete-Time Models for a Continuous-Time System
,”
IEE Proc. D Control Theory Appl.
,
136
(
2
), pp.
79
83
.10.1049/ip-d.1989.0012
16.
Hori
,
N.
,
Mori
,
T.
, and
Nikiforuk
,
P.
,
1992
, “
A New Perspective for Discrete-Time Models of a Continuous-Time System
,”
IEEE Trans. Autom. Control
,
37
(
7
), pp.
1013
1017
.10.1109/9.148360
17.
Markazi
,
A. H.
, and
Hori
,
N.
,
1992
, “
A New Method With Guaranteed Stability for Discretization of Continuous-Time Control Systems
,”
Proc. American Control Conference
,
Chicago
, June, pp.
1397
1402
.
18.
Middleton
,
R.
, and
Freudenberg
,
J.
,
1995
, “
Non-Pathological Sampling for Generalized Sampled-Data Hold Functions
,”
Automatica
,
31
(
2
), pp.
315
319
.10.1016/0005-1098(94)00095-Z
19.
Hori
,
N.
,
Cormier
,
R.
, Jr.
, and
Kanai
,
K.
,
1992
, “
On Matched Pole-Zero Discrete-Time Models
,”
IEE Proc. D, Control Theory Appl.
,
139
(
3
), pp.
273
278
.10.1049/ip-d.1992.0036
20.
Sain
,
M.
, and
Schrader
,
C.
,
1990
, “
The Role of Zeros in the Performance of Multiinput, Multioutput Feedback Systems
,”
IEEE Trans. Educ.
,
33
(
3
), pp.
244
257
.10.1109/13.57069
21.
Kučera
,
V.
,
1993
, “
Diophantine Equations in Control–a Survey
,”
Automatica
,
29
(
6
), pp.
1361
1375
.10.1016/0005-1098(93)90003-C
22.
Chen
,
T.
, and
Francis
,
B.
,
1991
, “
Input-Output Stability of Sampled-Data Systems
,”
IEEE Trans. Autom. Control
,
36
(
1
), pp.
50
58
.10.1109/9.62267
23.
Chen
,
T.
, and
Francis
,
B.
,
1991
, “
H/Sub 2/-Optimal Sampled-Data Control
,”
IEEE Trans. Autom. Control
,
36
(
4
), pp.
387
397
.10.1109/9.75098
24.
Shabib
,
G.
,
2013
, “
Digital Design of a Power System Stabilizer for a Power System Based on Plant Input Mapping
,”
Int. J. Electr. Power Energy Syst.
,
49
(
1
), pp.
40
46
.10.1016/j.ijepes.2012.12.010
25.
Yagi
,
K.
, and
Hori
,
N.
,
2016
, “
Steady-State Error-Compensation by Feedforward-Gain Tuning for Digital PIM Current Regulation of a Stepping-Motor Driver
,”
IASTED Int. Conference on Modeling, Identification, and Control 2016
,
Innsbruck, Austria
, pp.
66
71
.10.2316/P.2016.830-003
26.
Nishinaga
,
N.
,
Hori
,
N.
, and
Ruan
,
X.
,
2019
, “
Design of Dual-Rate PIM-Disturbance Regulators for a DC-DC Switching Converter
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
646
(
1
), pp.
012019
.10.1088/1757-899X/646/1/012019
27.
Ieko
,
T.
,
Ochi
,
Y.
,
Kanai
,
K.
,
Hori
,
N.
, and
Okamoto
,
K.
,
1996
, “
Digital Redesign Methods Based on Plant Input Mapping and a New Discrete-Time Model
,”
Proc. 35th IEEE Conference on Decision and Control
,
Kobe, Japan
, Dec. 13, Vol.
2
, pp.
1569
1574
.10.1109/CDC.1996.572747
28.
Yagi
,
K.
, and
Hori
,
N.
,
2018
, “
Plant-Input-Mapping Discretization in State-Space Form
,”
Proc. IEEE International Conference on Industrial Technology
,
Lyon, France
, Feb. 20–22, pp.
280
285
.10.1109/ICIT.2018.8352190
29.
Kučera
,
V.
,
2017
, “
Model Matching by Dynamic State Feedback
,”
IFAC-Papers Online
,
50
(
1
), pp.
3045
3050
.10.1016/j.ifacol.2017.08.673
30.
Yagi
,
K.
,
2020
, “
Matched-Pole–Zero Discrete-Time Model in the State-Space Representation
,”
IET Control Theory Appl.
,
14
(
19
), pp.
3270
3281
.10.1049/iet-cta.2019.0382
31.
Tsuchida
,
R.
,
Yagi
,
K.
, and
Mori
,
Y.
,
2020
, “
A Study on the Plant-Input-Mapping Discretization for Nonlinear Control Systems Utilizing Feedback Linearization
,”
2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2020
,
Chiang Mai, Thailand
, pp.
265
270
.
32.
Goodwin
,
G. C.
, and
Middleton
,
R. H.
,
1990
,
Digital Control and Estimation - A Unified Approach
,
Prentice Hall
,
Englewood Cliffs, NJ
.
33.
Kailath
,
T.
,
1980
,
Linear Systems
,
Prentice Hall
,
Hoboken, NJ
.
34.
Ogata
,
K.
,
2001
,
Modern Control Engineering
, 4th ed.,
Prentice Hall
,
Hoboken, NJ
.
35.
Sejimo
,
I.
, and
Hori
,
N.
,
2004
, “
Models for PIM Digital Redesign of a Stepping Motor Current Regulator
,”
Proc. of SICE Annual Conference 2004
,
Sapporo, Japan
, pp.
355
360
.
You do not currently have access to this content.