Abstract

Rotor behavior may affect the torque characteristics of gerotor pumps, but the measurement of the behavior has received little attention. Thus, in this study, we measure the rotor behavior of a gerotor pump used for automatic transmissions under various operating conditions. The experiments revealed that the inner rotor rotated near the middle of the cover wall and casing sidewall, slightly tilted with respect to them. The outer rotor rotated in the vicinity of the casing sidewall and came closer to the sidewall with decreases in the dimensionless parameterμN/ΔP (where μ[Pa·s] is the oil viscosity, N[s1] is the rotational speed, and ΔP[Pa] is the pressure difference). In addition, the eccentricity of the outer rotor was observed to increase with decreases in μN/ΔP. The inclination of the inner rotor and the approximation of the outer rotor to the casing sidewall may increase the driving torque of the pump. Taking the measured results on rotor behavior into account, a clear physical meaning is given to an existing mathematical model of viscous friction torque.

References

1.
Nakamura
,
T.
,
2016
, “
Improvement of Fuel Efficiency of Passenger Cars by Taking Advantages of Tribology
,”
J. Jap. Soc. Tribologists
,
61
(
2
), pp.
65
70
(in Japanese).10.18914/tribologist.61.2_65
2.
Wilson
,
W. E.
,
1946
, “
Rotary-Pump Theory
,”
Trans. ASME
,
68
(
4
), pp.
371
384
.
3.
Wilson
,
W. E.
,
1949
, “
Performance Criteriafor Positive-Displacement Pumps and Fluid Motors
,”
Trans. ASME
,
71
(
2
), pp.
115
120
.
4.
Inaguma
,
Y.
, and
Hibi
,
A.
,
1994
, “
Friction Torque Characteristics of a Vane Pump
,”
J. Jap. Hydraul. Pneumatics Soc.
,
25
(
7
), pp.
843
849
(in Japanese).10.5739/jfps1970.25.843
5.
Kluger
,
M. A.
,
Fussner
,
D. R.
, and
Roethler
,
B.
,
1996
, “
A Performance Comparison of Various Automatic Transmission Pumping Systems
,”
SAE Paper No. 960424.
10.4271/960424
6.
Manco
,
S.
,
Nervegna
,
N.
,
Rundo
,
M.
,
Armenio
,
G.
,
Pachettii
,
C.
, and
Trichilo
,
R.
,
1998
, “
Gerotor Lubricating Oil Pump for IC Engines
,”
SAE Paper No. 982689.
10.4271/982689
7.
Inaguma
,
Y.
, and
Hibi
,
A.
,
2005
, “
Vane Pump Theory for Mechanical Efficiency
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
219
(
11
), pp.
1269
1278
.10.1243/095440605X32002
8.
Inaguma
,
Y.
, and
Hibi
,
A.
,
2007
, “
Reduction of Friction Torque in Vane Pump by Smoothing Cam Ring Surface
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
221
(
5
), pp.
527
534
.10.1243/0954406JMES225
9.
Inaguma
,
Y.
,
2010
, “
Reduction of Friction Torque in Vane Pump by Using Physical Vapour Deposition-Coated Vane
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
224
(
11
), pp.
2449
2458
.10.1243/09544062JMES2120
10.
Inaguma
,
Y.
,
2011
, “
Friction Torque Characteristics of an Internal Gear Pump
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
225
(
6
), pp.
1523
1534
.10.1177/0954406211399659
11.
Vacca
,
A.
, and
Guidetti
,
M.
,
2011
, “
Modeling and Experimental Validation of External Spur Gear Machines for Fluid Power Applications
,”
Simul. Model. Pract. Theory
,
19
(
9
), pp.
2007
2031
.10.1016/j.simpat.2011.05.009
12.
Inaguma
,
Y.
,
2012
, “
Oil Temperature Influence on Friction Torque Characteristics in Hydraulic Pumps
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
226
(
9
), pp.
2267
2280
.10.1177/0954406211430572
13.
Inaguma
,
Y.
, and
Yoshida
,
N.
,
2013
, “
Mathematical Analysis of Influence of Oil Temperature on Efficiencies in Hydraulic Pumps for Automatic Transmission
,”
SAE Int. J Passenger Cars—Mech. Sys.
,
6
(
2
), pp.
786
797
.10.4271/2013-01-0820
14.
Inaguma
,
Y.
,
2013
, “
A Practical Approach for Analysis of Leakage Flow Characteristics in Hydraulic Pumps
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
227
(
5
), pp.
980
991
.10.1177/0954406212456933
15.
Inaguma
,
Y.
,
2015
, “
Friction of Outer Rotor Affecting Friction Torque Characteristics in an Internal Gear Pump
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
229
(
16
), pp.
3013
3026
.10.1177/0954406214565804
16.
Manne
,
V. H. B.
,
Vacca
,
A.
, and
Merrill
,
K.
,
2021
, “
A Numerical Method for Evaluating the Torque Efficiency of Hydraulic Orbit Motors Considering Deformation Effects and Frictional Losses
,”
Mech. Syst. Signal Process.
,
146
, p.
107051
10.1016/j.ymssp.2020.107051.
17.
Rituraj
,
R.
,
Vacca
,
A.
, and
Rigosi
,
M.
,
2021
, “
Modeling and Validation of Hydro-Mechanical Losses in Pressure Compensated External Gear Machines
,”
Mechanism Mach. Theory
,
161
, p.
104310
.10.1016/j.mechmachtheory.2021.104310
18.
Merritt
,
E. H.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
, pp.
65
75
.
19.
Ivantysybn
,
J.
, and
Ivantysynova
,
M.
,
2003
,
Hydrostatic Pumps and Motors: Principles, Designs, Performance, Modelling, Analysis, Control and Testing
,
Tech Books International
,
New Delhi
, pp.
90
97
.
20.
Manring
,
N. D.
,
2005
,
Hydraulic Control Systems
,
Wiley
,
Hoboken, NJ
, pp.
267
268
.
21.
Michael
,
P. W.
,
Mettakadapa
,
S.
, and
Shahahmadi
,
S.
,
2016
, “
An Adsorption Model for Hydraulic Motor Lubrication
,”
ASME J. Tribol.
,
138
(
1
), p.
014503
10.1115/1.4031139
22.
Pham
,
T. H.
, and
Weber
,
J.
,
2019
, “
Theoretical and Experimental Analysis of the Effect of Misaligned Ring Gear on Performance of Internal Gear Motors/Pumps
,”
J. Mech. Sci. Tech.
,
33
(
9
), pp.
4049
4060
.10.1007/s12206-019-0801-4
23.
Hibi
,
A.
, and
Ichikawa
,
T.
,
1977
, “
Mathematical Model of the Torque Characteristics for Hydraulic Motors
,”
Bull. JSME
,
20
(
143
), pp.
616
621
.10.1299/jsme1958.20.616
24.
Armstrong-Helouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
You do not currently have access to this content.