Abstract
Counterbalance valves (CBVs) are widely used in hydraulic machines handling gravitational loads. They are usually adopted in hydraulic circuits that set the flow to the actuator with either metering control strategies or primary control strategies. In these circuits, the CBV does not determine the actuator velocity, but it establishes a proper counterpressure that balances the actuator during overrunning loads. A well-known problem of CBVs is the excessive power consumption introduced into the circuit, which is due to an excessive pressurization of the flow supply. This paper presents a solution for using CBVs to control the actuator velocity while also reducing energy consumption. The method consists in controlling the pilot port of the CBV through an external pressure source (adjustable pilot). The solution is first studied analytically, considering all the possible loading conditions at the actuator. Two different control strategies are presented: the “Smart CBV,” where the CBV does not control the actuator velocity but it minimizes the system pressure; and the “Smart System” that uses the CBV to efficiently control the actuator velocity during overrunning load conditions. An experimental validation of the proposed solutions is also provided, taking as reference a truck-mounted hydraulic crane. The results of the proposed solutions are compared to those achieved by the traditional circuit of the reference hydraulic crane which uses standard CBVs. For both cases of smart CBV and smart system, a remarkable power saving, respectively, up to 75% and up to 90% is observed.