Abstract

This article analyzes the combined parameter and state identifiability for a model of a cancerous tumor's growth dynamics. The model describes the impact of drug administration on the growth of two populations of cancer cells: a drug-sensitive population and a drug-resistant population. The model's dynamic behavior depends on the underlying values of its state variables and parameters, including the initial sizes and growth rates of the drug-sensitive and drug-resistant populations, respectively. The article's primary goal is to use Fisher identifiability analysis to derive and analyze the Cramér–Rao theoretical bounds on the best-achievable accuracy with which this estimation can be performed locally. This extends previous work by the authors, which focused solely on state estimation accuracy. This analysis highlights two key scenarios where estimation accuracy is particularly poor. First, a critical drug administration rate exists where the model's state observability is lost, thereby making the independent estimation of the drug-sensitive and drug-resistant population sizes impossible. Second, a different critical drug administration rate exists that brings the overall growth rate of the drug-sensitive population to zero, thereby worsening model parameter identifiability.

References

1.
Diop
,
S.
, and
Fliess
,
M.
,
1991
, “
Nonlinear Observability, Identifiability, and Persistent Trajectories
,”
Proceedings of the 30th IEEE Conference on Decision and Control
, Brighton, UK, Dec. 11–13,
IEEE
, pp.
714
719
.10.1109/CDC.1991.261405
2.
Ljung
,
L.
, and
Glad
,
T.
,
1994
, “
On Global Identifiability for Arbitrary Model Parametrizations
,”
Automatica
,
30
(
2
), pp.
265
276
.10.1016/0005-1098(94)90029-9
3.
Hansen
,
E.
,
Woods
,
R. J.
, and
Read
,
A. F.
,
2017
, “
How to Use a Chemotherapeutic Agent When Resistance to It Threatens the Patient
,”
PLoS Biol.
,
15
(
2
), p.
e2001110
.10.1371/journal.pbio.2001110
4.
Bellman
,
R.
, and
Åström
,
K. J.
,
1970
, “
On Structural Identifiability
,”
Math. Biosci.
,
7
(
3–4
), pp.
329
339
.10.1016/0025-5564(70)90132-X
5.
Jacquez
,
J. A.
, and
Greif
,
P.
,
1985
, “
Numerical Parameter Identifiability and Estimability: Integrating Identifiability, Estimability, and Optimal Sampling Design
,”
Math. Biosci.
,
77
(
1–2
), pp.
201
227
.10.1016/0025-5564(85)90098-7
6.
Gottesman
,
M. M.
,
2002
, “
Mechanisms of Cancer Drug Resistance
,”
Annu. Rev. Med.
,
53
(
1
), pp.
615
627
.10.1146/annurev.med.53.082901.103929
7.
Stilianakis
,
N. I.
,
Perelson
,
A. S.
, and
Hayden
,
F. G.
,
1998
, “
Emergence of Drug Resistance During an Influenza Epidemic: Insights From a Mathematical Model
,”
J. Infect. Dis.
,
177
(
4
), pp.
863
873
.10.1086/515246
8.
Eduati
,
F.
,
Doldàn-Martelli
,
V.
,
Klinger
,
B.
,
Cokelaer
,
T.
,
Sieber
,
A.
,
Kogera
,
F.
,
Dorel
,
M.
,
Garnett
,
M. J.
,
Blüthgen
,
N.
, and
Saez-Rodriguez
,
J.
,
2017
, “
Drug Resistance Mechanisms in Colorectal Cancer Dissected With Cell Type–Specific Dynamic Logic Models
,”
Cancer Res.
,
77
(
12
), pp.
3364
3375
.10.1158/0008-5472.CAN-17-0078
9.
Lavi
,
O.
,
Gottesman
,
M. M.
, and
Levy
,
D.
,
2012
, “
The Dynamics of Drug Resistance: A Mathematical Perspective
,”
Drug Resist. Updates
,
15
(
1–2
), pp.
90
97
.10.1016/j.drup.2012.01.003
10.
Sun
,
X.
, and
Hu
,
B.
,
2018
, “
Mathematical Modeling and Computational Prediction of Cancer Drug Resistance
,”
Briefings Bioinf.
,
19
(
6
), pp.
1382
1399
.10.1093/bib/bbx065
11.
Norton
,
L.
,
1988
, “
A GompertzianModel of Human Breast Cancer Growth
,”
Cancer Res.
,
48
(
24 Pt. 1
), pp.
7067
7071
.https://cancerres.aacrjournals.org/content/48/24_Part_1/7067
12.
De Pillis
,
L. G.
, and
Radunskaya
,
A.
,
2001
, “
A Mathematical Tumor Model With Immune Resistance and Drug Therapy: An Optimal Control Approach
,”
Comput. Math. Methods Med.
,
3
(
2
), pp.
79
100
.10.1080/10273660108833067
13.
Ferreira
,
S.
, Jr.
,
Martins
,
M.
, and
Vilela
,
M.
,
2002
, “
Reaction-Diffusion Model for the Growth of Avascular Tumor
,”
Phys. Rev. E
,
65
(
2
), p.
021907
.10.1103/PhysRevE.65.021907
14.
Bouvet
,
M.
,
Wang
,
J.
,
Nardin
,
S. R.
,
Nassirpour
,
R.
,
Yang
,
M.
,
Baranov
,
E.
,
Jiang
,
P.
,
Moossa
,
A.
, and
Hoffman
,
R. M.
,
2002
, “
Real-Time Optical Imaging of Primary Tumor Growth and Multiple Metastatic Events in a Pancreatic Cancer Orthotopic Model
,”
Cancer Res.
,
62
(
5
), pp.
1534
1540
.https://cancerres.aacrjournals.org/content/62/5/1534
15.
Alexander
,
S.
,
Koehl
,
G. E.
,
Hirschberg
,
M.
,
Geissler
,
E. K.
, and
Friedl
,
P.
,
2008
, “
Dynamic Imaging of Cancer Growth and Invasion: A Modified Skin-Fold Chamber Model
,”
Histochem. Cell Biol.
,
130
(
6
), pp.
1147
1154
.10.1007/s00418-008-0529-1
16.
Kreeger
,
P. K.
, and
Lauffenburger
,
D. A.
,
2010
, “
Cancer Systems Biology: A Network Modeling Perspective
,”
Carcinogenesis
,
31
(
1
), pp.
2
8
.10.1093/carcin/bgp261
17.
Hadjiandreou
,
M. M.
, and
Mitsis
,
G. D.
,
2014
, “
Mathematical Modeling of Tumor Growth, Drug-Resistance, Toxicity, and Optimal Therapy Design
,”
IEEE Trans. Biomed. Eng.
,
61
(
2
), pp.
415
425
.10.1109/TBME.2013.2280189
18.
Rodriguez-Brenes
,
I. A.
,
Komarova
,
N. L.
, and
Wodarz
,
D.
,
2013
, “
Tumor Growth Dynamics: Insights Into Evolutionary Processes
,”
Trends Ecol. Evol.
,
28
(
10
), pp.
597
604
.10.1016/j.tree.2013.05.020
19.
Benzekry
,
S.
,
Lamont
,
C.
,
Beheshti
,
A.
,
Tracz
,
A.
,
Ebos
,
J. M.
,
Hlatky
,
L.
, and
Hahnfeldt
,
P.
,
2014
, “
Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth
,”
PLoS Comput. Biol.
,
10
(
8
), p.
e1003800
.10.1371/journal.pcbi.1003800
20.
Lin
,
L.-G.
, and
Xin
,
M.
,
2020
, “
Guaranteed Continuity and Computational Improvement in SDRE Controllers for Cancer Treatment Analysis
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
4
), p.
041005
.10.1115/1.4045911
21.
Martin
,
R.
,
Fisher
,
M.
,
Minchin
,
R.
, and
Teo
,
K.
,
1992
, “
Optimal Control of Tumor Size Used to Maximize Survival Time When Cells Are Resistant to Chemotherapy
,”
Math. Biosci.
,
110
(
2
), pp.
201
219
.10.1016/0025-5564(92)90038-X
22.
Martin
,
R.
, and
Teo
,
K.
,
1994
,
Optimal Control of Drug Administration in Cancer Chemotherapy
,
World Scientific
, Singapore.
23.
Fernández
,
L. A.
, and
Pola
,
C.
,
2014
, “
Catalog of the Optimal Controls in Cancer Chemotherapy for the Gompertz Model Depending on PK/PD and the Integral Constraint
,”
Discrete Contin. Dyn. Syst.-B
,
19
(
6
), pp.
1563
1588
.10.3934/dcdsb.2014.19.1563
24.
Fernandez
,
L. A.
, and
Pola
,
C.
,
2019
, “
Optimal Control Problems for the Gompertz Model Under the Norton-Simon Hypothesis in Chemotherapy
,”
Discrete Contin. Dyn. Syst.-B
,
24
(
6
), pp.
2577
2612
.10.3934/dcdsb.2018266
25.
Lebedeva
,
G.
,
Sorokin
,
A.
,
Faratian
,
D.
,
Mullen
,
P.
,
Goltsov
,
A.
,
Langdon
,
S. P.
,
Harrison
,
D. J.
, and
Goryanin
,
I.
,
2012
, “
Model-Based Global Sensitivity Analysis as Applied to Identification of Anti-Cancer Drug Targets and Biomarkers of Drug Resistance in the ErbB2/3 Network
,”
Eur. J. Pharm. Sci.
,
46
(
4
), pp.
244
258
.10.1016/j.ejps.2011.10.026
26.
Raue
,
A.
,
Kreutz
,
C.
,
Maiwald
,
T.
,
Klingmüller
,
U.
, and
Timmer
,
J.
,
2011
, “
Addressing Parameter Identifiability by Model-Based Experimentation
,”
IET Syst. Biol.
,
5
(
2
), pp.
120
130
.10.1049/iet-syb.2010.0061
27.
Eisenberg
,
M. C.
, and
Jain
,
H. V.
,
2017
, “
A Confidence Building Exercise in Data and Identifiability: Modeling Cancer Chemotherapy as a Case Study
,”
J. Theor. Biol.
,
431
, pp.
63
78
.10.1016/j.jtbi.2017.07.018
28.
Wu
,
H.
,
Zhu
,
H.
,
Miao
,
H.
, and
Perelson
,
A. S.
,
2008
, “
Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models
,”
Bull. Math. Biol.
,
70
(
3
), pp.
785
799
.10.1007/s11538-007-9279-9
29.
Xia
,
X.
, and
Moog
,
C. H.
,
2003
, “
Identifiability of Nonlinear Systems With Application to HIV/AIDS Models
,”
IEEE Trans. Autom. Control
,
48
(
2
), pp.
330
336
.10.1109/TAC.2002.808494
30.
Doosthosseini
,
M.
,
Hansen
,
E.
, and
Fathy
,
H. K.
,
2019
, “
On the Accuracy of Drug-Resistant Cell Population Estimation From Total Cancer Size Measurements
,” 2019 18th European Control Conference (
ECC
), Naples, Italy, June 25–28,
IEEE
, pp.
343
350
.10.23919/ECC.2019.8795814
31.
Martin
,
R.
,
Fisher
,
M.
,
Minchin
,
R.
, and
Teo
,
K.
,
1990
, “
A Mathematical Model of Cancer Chemotherapy With an Optimal Selection of Parameters
,”
Math. Biosci.
,
99
(
2
), pp.
205
230
.10.1016/0025-5564(90)90005-J
You do not currently have access to this content.