Abstract

Traditional high-speed precision motion stage (HSPMS) design pursues high-stiffness structure to achieve fast response. However, such structure leads to high-frequency disturbance near dead zone of friction, which causes poor performance in controlling HSPMS. To this end, this paper proposes the active disturbance rejection control (ADRC)-based mechanical design to reduce the bandwidth of friction disturbance and improve the control performance of HSPMS. It is proved that the low-frequency disturbance can be more effectively tackled by the extended state observer (ESO) in the frame of ADRC. In particular, rigid-flexible coupling (RFC) positioning stage is presented for converting the high-frequency friction disturbance into the low-frequency elastic deformation disturbance by flexure hinges. The experimental tests are carried out for both traditional stage and RFC stage. It is clearly shown that compared with traditional design, the control performance of RFC stage is remarkably promoted.

References

1.
Yazaki
,
Y.
,
Fujimoto
,
H.
,
Sakata
,
K.
,
Hara
,
A.
, and
Saiki
,
K.
,
2014
, “
Settling Time Shortening Method Using Final State Control for High-Precision Stage With Decouplable Structure of Fine and Coarse Parts
,”
IECON—40th Annual Conference of the IEEE Industrial Electronics Society
, Dallas, TX, 29 Oct.–Nov. 1, pp.
2859
2865
.10.1109/IECON.2014.7048914
2.
He
,
Y.
,
Ye
,
W.
,
Gao
,
J.
,
Cui
,
C.
,
Chen
,
X.
,
Chen
,
X.
,
Yang
,
Z.
,
Zhang
,
K.
,
Chen
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Research on Dual-Linear Motor Synchronous Control in the High-Precision Gantry Motion Platform
,” IEEE 19th Electronics Packaging Technology Conference (
EPTC
), Grand Copthorne, Singapore, Dec. 6–9, pp.
1
5
.https://enotice.vtools.ieee.org/public/18556
3.
Saiki
,
K.
,
Hara
,
A.
,
Sakata
,
K.
, and
Fujimoto
,
H.
,
2010
, “
A Study on High-Speed and High-Precision Tracking Control of Large-Scale Stage Using Perfect Tracking Control Method Based on Multirate Feedforward Control
,”
IEEE Trans. Ind. Electron.
,
57
(
4
), pp.
1393
1400
.10.1109/TIE.2009.2030212
4.
Olsson
,
H.
, and
Astrom
,
K. J.
,
2001
, “
Friction Generated Limit Cycles
,”
IEEE Trans. Control Syst. Technol.
,
9
(
4
), pp.
629
636
.10.1109/87.930974
5.
Gu
,
G.
,
Zhu
,
L.
,
Su
,
C.
,
Ding
,
H.
, and
Fatikow
,
S.
,
2016
, “
Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
1
), pp.
313
332
.10.1109/TASE.2014.2352364
6.
Jian
,
Y.
,
Huang
,
D.
,
Liu
,
J.
, and
Min
,
D.
,
2019
, “
High-Precision Tracking of Piezoelectric Actuator Using Iterative Learning Control and Direct Inverse Compensation of Hysteresis
,”
IEEE Trans. Ind. Electron.
,
66
(
1
), pp.
368
377
.10.1109/TIE.2018.2826450
7.
Shan
,
G.
,
Li
,
Y.
,
Zhang
,
L.
,
Wang
,
Z.
,
Zhang
,
Y.
, and
Qian
,
J.
,
2015
, “
Contributed Review: Application of Voice Coil Motors in High-Precision Positioning Stages With Large Travel Ranges
,”
Rev. Sci. Instrum.
,
86
(
10
), p.
101501
.10.1063/1.4932580
8.
Tan
,
Y.
,
Gao
,
J.
,
Zhang
,
L.
,
Jiang
,
Y.
,
Tang
,
H.
, and
He
,
Y.
,
2017
, “
A Rapid PID Control Method for High-Speed Macro-Micro Composite Positioning Stage
,”
18th International Conference on Electronic Packaging Technology (ICEPT)
, Harbin, China, pp.
426
431
.10.1109/ICEPT.2017.8046486
9.
Chuan
,
Y.
,
Wang
,
G. L.
,
Yang
,
B. S.
, and
Wang
,
H. R.
,
2008
, “
Research on the Structure of High-Speed Large-Scale Ultra-Precision Positioning System
,”
Third IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, Sanya, China, Jan. 6–9, pp.
9
12
.10.1109/NEMS.2008.4484276
10.
Elfizy
,
A. T.
,
Bone
,
G. M.
, and
Elbestawi
,
M. A.
,
2005
, “
Design and Control of a Dual-Stage Feed Drive
,”
Int. J. Mach. Tools Manuf.
,
45
(
2
), pp.
153
165
.10.1016/j.ijmachtools.2004.07.008
11.
Choi
,
Y. M.
, and
Gweon
,
D. G.
,
2011
, “
A High-Precision Dual-Servo Stage Using Halbach Linear Active Magnetic Bearings
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
925
931
.10.1109/TMECH.2010.2056694
12.
Bai
,
Y.
,
2017
, “
Optimal Design and Motion Planning of Macro-Micro Composite Linear Stage for High Speed and Precision Positioning
,” Ph.D. thesis,
Guangdong University of Technology
, Guangzhou, China.
13.
Yang
,
Z.
,
Bai
,
Y.
,
Chen
,
X.
, and
Chen
,
C.
,
2017
, “
Single-Drive Rigid-Flexible Coupling Precision Motion Platform and Realization Method and Application Thereof
,” Publication No. USPTO 20180104779.
14.
Dong
,
X.
,
Liu
,
X.
,
Yoon
,
D.
, and
Okwudire
,
C. E.
,
2017
, “
Simple and Robust Feedforward Compensation of Quadrant Glitches Using a Compliant Joint
,”
CIRP Ann.
,
66
(
1
), pp.
353
356
.10.1016/j.cirp.2017.04.048
15.
Dong
,
X.
, and
Okwudire
,
C. E.
,
2018
, “
An Experimental Investigation of the Effects of the Compliant Joint Method on Feedback Compensation of Pre-Sliding/Pre-Rolling Friction
,”
Precis. Eng.
,
54
, pp.
81
90
.10.1016/j.precisioneng.2018.05.004
16.
Yoon
,
J. Y.
, and
Trumper
,
D. L.
,
2014
, “
Friction Modeling, Identification, and Compensation Based on Friction Hysteresis and Dahl Resonance
,”
Mechatronics Sci. Intell. Mach.
,
24
(
6
), pp.
734
741
.10.1016/j.mechatronics.2014.02.006
17.
Feng
,
Z.
,
Ling
,
J.
,
Ming
,
M.
, and
Xiao
,
X.
,
2019
, “
Integrated Modified Repetitive Control With Disturbance Observer of Piezoelectric Nanopositioning Stages for High-Speed and Precision Motion
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
8
), p.
081006
.10.1115/1.4042879
18.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
19.
Tian
,
G.
, and
Gao
,
Z.
,
2007
, “
Frequency Response Analysis of Active Disturbance Rejection Based Control System
,”
IEEE International Conference on Control Applications
, Singapore, Oct. 1–3, pp.
1595
1599
.10.1109/CCA.2007.4389465
20.
Zhang
,
B.
,
Tan
,
W.
, and
Li
,
J.
,
2019
, “
Tuning of Linear Active Disturbance Rejection Controller With Robustness Specification
,”
ISA Trans.
,
85
, pp.
237
246
.10.1016/j.isatra.2018.10.018
21.
Xue
,
W.
,
Madonski
,
R.
,
Lakomy
,
K.
,
Gao
,
Z.
, and
Huang
,
Y.
,
2017
, “
Add-On Module of Active Disturbance Rejection for Set-Point Tracking of Motion Control Systems
,”
IEEE Trans. Ind. Appl.
,
53
(
4
), pp.
4028
4040
.10.1109/TIA.2017.2677360
22.
Zhao
,
Z. L.
, and
Guo
,
B. Z.
,
2017
, “
A Nonlinear Extended State Observer Based on Fractional Power Functions
,”
Automatica
,
81
, pp.
286
296
.10.1016/j.automatica.2017.03.002
23.
Ran
,
M.
,
Wang
,
Q.
,
Dong
,
C.
, and
Xie
,
L.
,
2020
, “
Active Disturbance Rejection Control for Uncertain Time-Delay Nonlinear Systems
,”
Automatica
,
112
, p.
108692
.10.1016/j.automatica.2019.108692
24.
Chen
,
S.
,
Xue
,
W.
, and
Huang
,
Y.
,
2019
, “
Analytical Design of Active Disturbance Rejection Control for Nonlinear Uncertain Systems With Delay
,”
Control Eng. Pract.
,
84
, pp.
323
336
.10.1016/j.conengprac.2018.12.007
25.
Wu
,
X.
,
Li
,
Y.
,
Chen
,
Z.
, and
Sun
,
M.
,
2019
, “
On the Design and Realization of Active Disturbance Rejection Generalized Predictive Control
,”
IMA J. Math. Control Inf.
,
36
(
4
), pp.
1275
1304
.10.1093/imamci/dny027
26.
Sun
,
L.
,
Dong
,
J.
,
Li
,
D.
, and
Zhang
,
Y.
,
2014
, “
Active Disturbance Rejection Control for Digital Electric-Hydraulic System
,”
Proceedings of the 33rd Chinese Control Conference
, Nanjing, China, July 28–30, pp.
3674
3679
.10.1109/ChiCC.2014.6895550
27.
Sun
,
J.
,
Yang
,
J.
,
Li
,
S.
, and
Zheng
,
W.
,
2019
, “
Sampled-Data-Based Event-Triggered Active Disturbance Rejection Control for Disturbed Systems in Networked Environment
,”
IEEE Trans. Cybern.
,
49
(
2
), pp.
556
566
.10.1109/TCYB.2017.2780625
28.
Aguilar-Ibanez
,
C.
,
Sira-Ramirez
,
H.
, and
Suarez-Castanon
,
M. S.
,
2016
, “
A Linear Active Disturbance Rejection Control for a Ball and Rigid Triangle System
,”
Math. Probl. Eng.
,
2016
, pp.
1
11
.10.1155/2016/1358930
29.
Zheng
,
Q.
, and
Gao
,
Z.
,
2010
, “
On Practical Applications of Active Disturbance Rejection Control
,”
29th Chinese Control Conference
, Beijing, China, July 29–31, pp.
6095
6100
.http://ieeecss.org/event/29thchinese-control-conference
30.
Wang
,
W.
,
Shao
,
X.
,
Li
,
Q.
,
Gao
,
J.
, and
Hao
,
Z.
,
2019
, “
Research on Active Disturbance Rejection Control Method for Turbine Blade Tip Clearance
,”
Sci. China Technol. Sci.
,
62
(
10
), pp.
1795
1804
.10.1007/s11431-018-9431-x
31.
Chang
,
S.
,
Wang
,
Y.
, and
Zuo
,
Z.
,
2020
, “
Fixed-Time Active Disturbance Rejection Control and Its Application to Wheeled Mobile Robots
,”
IEEE Trans. Syst., Man, Cybern. Syst.
, pp.
1
11
. 10.1109/TSMC.2020.2966077
32.
Xue
,
W.
, and
Huang
,
Y.
,
2018
, “
Performance Analysis of 2-DOF Tracking Control for a Class of Nonlinear Uncertain Systems With Discontinuous Disturbances
,”
Int. J. Rob. Nonlinear Control
,
28
(
4
), pp.
1456
1473
.10.1002/rnc.3972
33.
Gao
,
Z.
,
2003
, “
Scaling and Bandwidth-Parameterization Based Controller Tuning
,”
Proceedings of the American Control Conference
, Denver, CO, June 4–6, pp.
4989
4996
.10.1109/ACC.2003.1242516
34.
Yang
,
Z.
,
Peng
,
H.
,
Xue
,
W.
, and
Sun
,
H.
,
2019
, “
A Novel Motion Stage Design by Reducing Disturbance Bandwidth of ADRC for Higher Performance
,” Chinese Control Conference (
CCC)
, Guangzhou, China, July 27–30, pp.
4327
4331
.10.23919/ChiCC.2019.8866580
You do not currently have access to this content.