Abstract

A surrogate-assisted optimization approach is an attractive way to reduce the total computational budget for obtaining optimal solutions. This makes it special for its application to practical optimization problems requiring a large number of expensive evaluations. Unfortunately, all practical applications are affected by measurement noises, and not much work has been done to address the issue of handling stochastic problems with multiple objectives and constraints. This work tries to bridge the gap by demonstrating three different frameworks for performing surrogate-assisted optimization on multi-objective constrained problems with stochastic measurements. To make the algorithms applicable to real-world problems, heteroscedastic (nonuniform) noise is considered for all frameworks. The proposed algorithms are first validated on several multi-objective numerical problems (unconstrained and constrained) to verify their effectiveness and then applied to the diesel engine calibration problem, which is expensive to perform and has measurement noises. A gt-suite model is used to perform the engine calibration study. Three control parameters, namely, variable geometry turbocharger (VGT) vane position, exhaust-gas-recirculating (EGR) valve position, and the start of injection (SOI), are calibrated to obtain the tradeoff between engine fuel efficiency performance (brake specific fuel consumption (BSFC)) and NOx emissions within the constrained design space. The results show that all three proposed extensions can handle the problems well with different measurement noise levels at a reduced evaluation budget. For the engine calibration problem, a good approximation of the optimal region is observed with more than 80% reduction in the evaluation budget for all the proposed methodologies.

References

1.
Mallamo
,
F.
,
Badami
,
M.
, and
Millo
,
F.
,
2004
, “
Application of the Design of Experiments and Objective Functions for the Optimization of Multiple Injection Strategies for Low Emissions in CR Diesel Engines
,”
SAE
Paper No. 2004-01-0123.10.4271/2004-01-0123
2.
Piano
,
A.
,
Millo
,
F.
,
Boccardo
,
G.
,
Rafigh
,
M.
,
Gallone
,
A.
, and
Rimondi
,
M.
,
2016
, “
Assessment of the Predictive Capabilities of a Combustion Model for a Modern Common Rail Automotive Diesel Engine
,”
SAE
Paper No. 2016-01-0547. 10.4271/2016-01-0547
3.
Li
,
R. C.
, and
Zhu
,
G. G.
,
2021
, “
A Real-Time Pressure Wave Model for Knock Prediction and Control
,”
Int. J. Engine Res.
,
22
(
3
), pp.
986
1000
.10.1177/1468087419869161
4.
Men
,
Y.
,
Haskara
,
I.
, and
Zhu
,
G.
,
2020
, “
Multi-Zone Reaction-Based Modeling of Combustion for Multiple-Injection Diesel Engines
,”
Int. J. Engine Res.
,
21
(
6
), pp.
1012
1025
.10.1177/1468087418788488
5.
Song
,
R.
,
Gentz
,
G.
,
Zhu
,
G.
,
Toulson
,
E.
, and
Schock
,
H.
,
2017
, “
A Control-Oriented Model of Turbulent Jet Ignition Combustion in a Rapid Compression Machine
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
231
(
10
), pp.
1315
1325
.10.1177/0954407016670303
6.
Thiel
,
M. P.
,
Klingbeil
,
A. E.
, and
Reitz
,
R. D.
,
2002
, “
Experimental Optimization of a Heavy-Duty Diesel Engine Using Automated Genetic Algorithms
,”
SAE
Technical Paper No. 2002-01-0960. 10.4271/2002-01-0960
7.
Hiroyasu
,
H.
,
Miao
,
H.
,
Hiroyasu
,
T.
,
Miki
,
M.
,
Kamiura
,
J.
, and
Watanabe
,
S.
,
2003
, “
Genetic Algorithms Optimization of Diesel Engine Emissions and Fuel Efficiency With Air Swirl, EGR, Injection Timing and Multiple Injections
,”
SAE
Paper No. 2003-01-1853.10.4271/2003-01-1853
8.
Piano
,
A.
,
Millo
,
F.
,
Sapio
,
F.
, and
Pesce
,
F. C.
,
2018
, “
Multi-Objective Optimization of Fuel Injection Pattern for a Light-Duty Diesel Engine Through Numerical Simulation
,”
SAE Int. J. Engines
,
11
(
6
), pp.
1093
1108
.10.4271/2018-01-1124
9.
Zhou
,
J.
,
Su
,
X.
, and
Cui
,
G.
,
2018
, “
An Adaptive Kriging Surrogate Method for Efficient Joint Estimation of Hydraulic and Biochemical Parameters in Reactive Transport Modeling
,”
J. Contam. Hydrol.
,
216
, pp.
50
57
.10.1016/j.jconhyd.2018.08.005
10.
Lyu
,
W.
,
Yang
,
F.
,
Yan
,
C.
,
Zhou
,
D.
, and
Zeng
,
X.
,
2018
, “
Multi-Objective Bayesian Optimization for Analog/RF Circuit Synthesis
,”
Proceedings of the 55th Annual Design Automation Conference
, San Francisco, CA, June 24–29, ACM, pp.
1
6
.10.1109/DAC.2018.8465872
11.
Park
,
S.
,
Na
,
J.
,
Kim
,
M.
, and
Lee
,
J. M.
,
2018
, “
Multi-Objective Bayesian Optimization of Chemical Reactor Design Using Computational Fluid Dynamics
,”
Comput. Chem. Eng.
,
119
, pp.
25
37
.10.1016/j.compchemeng.2018.08.005
12.
Dellino
,
G.
,
Lino
,
P.
,
Meloni
,
C.
, and
Rizzo
,
A.
,
2009
, “
Kriging Metamodel Management in the Design Optimization of a CNG Injection System
,”
Math. Comput. Simul.
,
79
(
8
), pp.
2345
2360
.10.1016/j.matcom.2009.01.013
13.
Picheny
,
V.
,
Wagner
,
T.
, and
Ginsbourger
,
D.
,
2013
, “
A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
607
626
.10.1007/s00158-013-0919-4
14.
Jalali
,
H.
,
Van Nieuwenhuyse
,
I.
, and
Picheny
,
V.
,
2017
, “
Comparison of Kriging-Based Algorithms for Simulation Optimization With Heterogeneous Noise
,”
Eur. J. Oper. Res.
,
261
(
1
), pp.
279
301
.10.1016/j.ejor.2017.01.035
15.
Gonzalez
,
S. R.
,
Jalali
,
H.
, and
Van Nieuwenhuyse
,
I.
,
2019
, “
A Multiobjective Stochastic Simulation Optimization Algorithm
,”
Eur. J. Oper. Res.
,
284
(
1
), pp.
212
226
.10.1016/j.ejor.2019.12.014
16.
Zhang
,
J.
,
Ma
,
Y.
,
Yang
,
T.
, and
Liu
,
L.
,
2017
, “
Estimation of the Pareto Front in Stochastic Simulation Through Stochastic Kriging
,”
Simul. Modell. Pract. Theory
,
79
, pp.
69
86
.10.1016/j.simpat.2017.09.006
17.
Pal
,
A.
,
Zhu
,
L.
,
Wang
,
Y.
, and
Zhu
,
G. G.
,
2020
, “
Multi-Objective Stochastic Bayesian Optimization for Iterative Engine Calibration
,” 2020 American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
4893
4898
.10.23919/ACC45564.2020.9147983
18.
Østergård
,
T.
,
Jensen
,
R. L.
, and
Maagaard
,
S. E.
,
2018
, “
A Comparison of Six Metamodeling Techniques Applied to Building Performance Simulations
,”
Appl. Energy
,
211
, pp.
89
103
.10.1016/j.apenergy.2017.10.102
19.
Shi
,
L.
, and
Rasheed
,
K.
,
2010
, “
A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms
,”
Computational Intelligence in Expensive Optimization Problems
,
Springer
, Berlin, pp.
3
28
.10.1007/978-3-642-10701-6_1
20.
Ankenman
,
B.
,
Nelson
,
B. L.
, and
Staum
,
J.
,
2010
, “
Stochastic Kriging for Simulation Metamodeling
,”
Oper. Res.
,
58
(
2
), pp.
371
382
.10.1287/opre.1090.0754
21.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Chichester, UK.10.1002/9780470770801
22.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.10.1214/ss/1177012413
23.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.10.1115/1.2429697
24.
Jin
,
Y.
,
2011
, “
Surrogate-Assisted Evolutionary Computation: Recent Advances and Future Challenges
,”
Swarm Evol. Comput.
,
1
(
2
), pp.
61
70
.10.1016/j.swevo.2011.05.001
25.
Qin
,
C.
,
Klabjan
,
D.
, and
Russo
,
D.
,
2017
, “
Improving the Expected Improvement Algorithm
,”
Advances in Neural Information Processing Systems
, Curran Associates Inc., Brooklyn, New York, pp.
5381
5391
.
26.
Sóbester
,
A.
,
Leary
,
S. J.
, and
Keane
,
A. J.
,
2005
, “
On the Design of Optimization Strategies Based on Global Response Surface Approximation Models
,”
J. Global Optim.
,
33
(
1
), pp.
31
59
.10.1007/s10898-004-6733-1
27.
Ryzhov
,
I. O.
,
2016
, “
On the Convergence Rates of Expected Improvement Methods
,”
Oper. Res.
,
64
(
6
), pp.
1515
1528
.10.1287/opre.2016.1494
28.
Osborne
,
M. A.
,
Garnett
,
R.
, and
Roberts
,
S. J.
,
2009
, “
Gaussian Processes for Global Optimization
,”
Third International Conference on Learning and Intelligent Optimization (LION3)
, Trento, Italy, Jan. 14–18, pp.
1
15
.
29.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
.10.1007/s10898-005-2454-3
30.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Richet
,
Y.
, and
Caplin
,
G.
,
2013
, “
Quantile-Based Optimization of Noisy Computer Experiments With Tunable Precision
,”
Technometrics
,
55
(
1
), pp.
2
13
.10.1080/00401706.2012.707580
31.
Scott
,
W.
,
Frazier
,
P.
, and
Powell
,
W.
,
2011
, “
The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters Using Gaussian Process Regression
,”
SIAM J. Optim.
,
21
(
3
), pp.
996
1026
.10.1137/100801275
32.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
33.
Das
,
I.
, and
Dennis
,
J. E.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.10.1137/S1052623496307510
34.
Keane
,
A. J.
,
2006
, “
Statistical Improvement Criteria for Use in Multiobjective Design Optimization
,”
AIAA J.
,
44
(
4
), pp.
879
891
.10.2514/1.16875
35.
Svenson
,
J.
, and
Santner
,
T.
,
2016
, “
Multiobjective Optimization of Expensive-to-Evaluate Deterministic Computer Simulator Models
,”
Comput. Stat. Data Anal.
,
94
, pp.
250
264
.10.1016/j.csda.2015.08.011
36.
Emmerich
,
M. T.
,
Giannakoglou
,
K. C.
, and
Naujoks
,
B.
,
2006
, “
Single-and Multiobjective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels
,”
IEEE Trans. Evol. Comput.
,
10
(
4
), pp.
421
439
.10.1109/TEVC.2005.859463
37.
Zhan
,
D.
,
Cheng
,
Y.
, and
Liu
,
J.
,
2017
, “
Expected Improvement Matrix-Based Infill Criteria for Expensive Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
,
21
(
6
), pp.
956
975
.10.1109/TEVC.2017.2697503
38.
Gardner
,
J. R.
,
Kusner
,
M. J.
,
Xu
,
Z. E.
,
Weinberger
,
K. Q.
, and
Cunningham
,
J. P.
,
2014
, “
Bayesian Optimization With Inequality Constraints
,”
ICML
, Beijing, China, June 21–26, pp.
937
945
.
39.
Hernández-Lobato
,
J. M.
,
Gelbart
,
M. A.
,
Adams
,
R. P.
,
Hoffman
,
M. W.
, and
Ghahramani
,
Z.
,
2016
, “
A General Framework for Constrained Bayesian Optimization Using Information-Based Search
,”
J. Mach. Learn. Res.
,
17
(
1
), pp.
5549
5601
.
40.
Pal
,
A.
,
Zhu
,
L.
,
Wang
,
Y.
, and
Zhu
,
G.
,
2021
, “
Constrained Surrogate-Based Engine Calibration Using Lower Confidence Bound
,”
IEEE/ASME Trans. Mechatronics
, p. 1.10.1109/TMECH.2021.3053246
41.
Kumar
,
K.
,
1995
, “
Real-Coded Genetic Algorithms With Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems
,”
Complex Syst.
,
9
, pp.
431
454
.
42.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
43.
Deb
,
K.
,
2001
,
Multiobjective Optimisation Using Evolutionary Algorithms
,
Wiley
,
Chichester, UK
.
You do not currently have access to this content.