Abstract

This paper investigates the problem of observer-based finite time sliding mode control (SMC) for a class of one-sided Lipschitz (OSL) systems with uncertainties. The parameter uncertainties are assumed to be time-varying norm-bounded appearing not only in both the state and output matrices but also in the nonlinear function. For a time interval [0,T], we divide it into two parts: one part is the reaching phase within [0,T*] and another part is the sliding motion phase within [T*,T]. First, the reachability of the sliding mode surface with T*T is proved. Next, several conditions are proposed which ensure robust finite time boundedness (FTB) of the corresponding closed-loop systems in the interval [0,T*] and [T*,T], respectively. Then, the sufficient conditions, which guarantee robust finite time boundedness of the closed-loop system in whole time interval [0,T], are given in terms of linear matrix inequalities (LMIs), and further the robust observer and controller can be designed in an LMI frame. A convex optimization problem subject to LMIs is formulated to optimize the desired performance indices of interest to us. Finally, a practical example is given to demonstrate the effectiveness of the proposed methods.

References

1.
Zheng
,
C.
,
Su
,
Y.
, and
Mercorelli
,
P.
,
2020
, “
Single Robust Proportional-Derivative Control for Friction Compensation in Fast and Precise Motion Systems With Actuator Constraint
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
11
), p.
114505
.10.1115/1.4047696
2.
Wu
,
L.
, and
Wei
,
X. Z.
,
2009
, “
Passivity-Based Sliding Mode Control of Uncertain Singular Time-Delay Systems
,”
Automatica
,
45
(
9
), pp.
2120
2127
.10.1016/j.automatica.2009.05.014
3.
Song
,
J.
,
Niu
,
Y.
, and
Zou
,
Y.
,
2018
, “
Asynchronous Sliding Mode Control of Markovian Jump Systems With Time-Varying Delays and Partly Accessible Mode Detection Probabilities
,”
Automatica
,
93
, pp.
33
41
.10.1016/j.automatica.2018.03.037
4.
Hadda
,
B.
,
Larbi
,
C.-A.
, and
Abdessalam
,
M.
,
2018
, “
A New Technique of Second Order Sliding Mode Control Applied to Induction Motor
,”
Eur. J. Electr. Eng.
,
20
(
4
), pp.
399
412
.10.3166/ejee.20.399-412
5.
Zemouche
,
A.
, and
Boutayeb
,
M.
,
2013
, “
On LMI Conditions to Design Observers for Lipschitz Nonlinear Systems
,”
Automatica
,
49
(
2
), pp.
585
591
.10.1016/j.automatica.2012.11.029
6.
Yadegar
,
M.
,
Afshar
,
A.
, and
Davoodi
,
M.
,
2018
, “
Observer-Based Tracking Controller Design for a Class of Lipschitz Nonlinear Systems
,”
J. Vib. Control
,
24
(
11
), pp.
2112
2119
.10.1177/1077546317721597
7.
Hu
,
G. D.
,
2006
, “
Observers for One-Sided Lipschitz Non-Linear Systems
,”
Ima J. Math. Control Inf.
,
23
(
4
), pp.
395
401
.10.1093/imamci/dni068
8.
Abbaszadeh
,
M.
, and
Marquez
,
H. J.
,
2010
, “
Nonlinear Observer Design for One-Sided Lipschitz Systems
,”
Proceedings of the American Control Conference
, Baltimore, MD, June 30–July 2, pp.
5284
5289
.10.1109/ACC.2010.5530715
9.
Benallouch
,
M.
,
Boutayeb
,
M.
, and
Zasadzinski
,
M.
,
2012
, “
Observer Design for One-Sided Lipschitz Discrete-Time Systems
,”
Syst. Control Lett.
,
61
(
9
), pp.
879
886
.10.1016/j.sysconle.2012.05.005
10.
Zhang
,
W.
,
Su
,
H.
,
Wang
,
H.
, and
Han
,
Z.
,
2012
, “
Full-Order and Reduced-Order Observers for One-Sided Lipschitz Nonlinear Systems Using Riccati Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
4968
4977
.10.1016/j.cnsns.2012.05.027
11.
Ahmad
,
S.
,
Rehan
,
M.
, and
Hong
,
K.-S.
,
2016
, “
Observer-Based Robust Control of One-Sided Lipschitz Nonlinear Systems
,”
ISA Trans.
,
65
, pp.
230
240
.10.1016/j.isatra.2016.08.010
12.
Nguyen
,
C. M.
,
Pathirana
,
P. N.
, and
Trinh
,
H.
,
2019
, “
Robust Observer and Observer-Based Control Designs for Discrete One-Sided Lipschitz Systems Subject to Uncertainties and Disturbances
,”
Appl. Math. Comput.
,
353
, pp.
42
53
.10.1016/j.amc.2019.01.064
13.
Ahmad
,
S.
, and
Rehan
,
M.
,
2017
, “
Generalized Filtering of One-Sided Lipschitz Nonlinear Systems Under Measurement Delays
,”
J. Franklin Inst.
,
354
(
13
), pp.
5589
5616
.10.1016/j.jfranklin.2017.06.016
14.
Zhao
,
Z.
,
Lv
,
F.
,
Zhang
,
J.
, and
Du
,
Y.
,
2018
, “
H Synchronization for Uncertain Time-Delay Chaotic Systems With One-Sided Lipschitz Nonlinearity
,”
IEEE Access
,
6
(
04
), pp.
19798
19806
.10.1109/ACCESS.2018.2817617
15.
Rastegari
,
A.
,
Arefi
,
M. M.
, and
Asemani
,
M. H.
,
2019
, “
Robust H Sliding Mode Observer-Based Fault-Tolerant Control for One-Sided Lipschitz Nonlinear Systems
,”
Asian J. Control
,
21
(
1
), pp.
114
129
.10.1002/asjc.2062
16.
Saad
,
W.
,
Sellami
,
A.
, and
Garcia
,
G.
,
2018
, “
Robust Integral Sliding Mode H-Control of One-Sided Lipschitz Non-Linear Systems
,”
IET Control Theory Appl.
,
12
(
17
), pp.
2357
2367
.10.1049/iet-cta.2018.5510
17.
Saad
,
W.
,
Sellami
,
A.
, and
Garcia
,
G.
,
2019
, “
H-Sliding Mode Control of One-Sided Lipschitz Nonlinear Systems Subject to Input Nonlinearities and Polytopic Uncertainties
,”
ISA Trans.
,
90
, pp.
19
29
.10.1016/j.isatra.2018.12.040
18.
Amato
,
F.
,
Ariola
,
M.
, and
Dorato
,
P.
,
2001
, “
Finite-Time Control of Linear Systems Subject to Parametric Uncertainties and Disturbances
,”
Automatica
,
37
(
9
), pp.
1459
1463
.10.1016/S0005-1098(01)00087-5
19.
Garcia
,
G.
,
Tarbouriech
,
S.
, and
Bernussou
,
J.
,
2009
, “
Finite-Time Stabilization of Linear Time-Varying Continuous Systems
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
364
369
.10.1109/TAC.2008.2008325
20.
Song
,
J.
, and
He
,
S.
,
2015
, “
Finite-Time H Control for Quasi-One-Sided Lipschitz Nonlinear Systems
,”
Neurocomputing
,
149
, pp.
1433
1439
.10.1016/j.neucom.2014.08.051
21.
Song
,
J.
, and
He
,
S.
,
2015
, “
Robust Finite-Time H Control for One-Sided Lipschitz Nonlinear Systems Via State Feedback and Output Feedback
,”
J. Franklin Inst.
,
352
(
8
), pp.
3250
3266
.10.1016/j.jfranklin.2014.12.010
22.
Huang
,
Y.
,
Fu
,
S.
, and
Shen
,
Y.
,
2016
, “
Finite-Time H Control for One-Sided Lipschitz Systems With Auxiliary Matrices
,”
Neurocomputing
,
194
, pp.
207
217
.10.1016/j.neucom.2016.01.080
23.
Zhao
,
H.
, and
Niu
,
Y.
,
2019
, “
Finite-Time Sliding Mode Control of Switched Systems With One-Sided Lipschitz Nonlinearity
,”
J. Franklin Inst.
(in press).10.1016/j.jfranklin.2019.05.019
24.
Gholami
,
H.
, and
Binazadeh
,
T.
,
2019
, “
Observer-Based H Finite-Time Controller for Time-Delay Nonlinear One-Sided Lipschitz Systems With Exogenous Disturbances
,”
J. Vib. Control
,
25
(
4
), pp.
806
819
.10.1177/1077546318802422
25.
Song
,
J.
,
Niu
,
Y.
, and
Zou
,
Y.
,
2017
, “
Finite-Time Stabilization Via Sliding Mode Control
,”
IEEE Trans. Autom. Control
,
62
(
3
), pp.
1478
1483
.10.1109/TAC.2016.2578300
26.
Ren
,
J.
, and
Zhang
,
Q.
,
2012
, “
Robust Normalization and Guaranteed Cost Control for a Class of Uncertain Descriptor Systems
,”
Automatica
,
48
(
8
), pp.
1693
1697
.10.1016/j.automatica.2012.05.038
27.
Nguyen
,
C.
,
Pathirana
,
P.
, and
Trinh
,
H.
,
2018
, “
Robust Observer Design for Uncertain One-Sided Lipschitz Systems With Disturbances
,”
Int. J. Robust Nonlinear Control
,
28
(
4
), pp.
1366
80
.10.1002/rnc.3960
28.
Delshad
,
S. S.
,
Johansson
,
A.
,
Darouach
,
M.
, and
Gustafsson
,
T.
,
2016
, “
Robust State Estimation and Unknown Inputs Reconstruction for a Class of Nonlinear Systems: Multiobjective Approach
,”
Automatica
,
64
(
2016
), pp.
1
7
.10.1016/j.automatica.2015.10.051
29.
Haiek Badreddine
,
E.
,
Aiss Hicham
,
E.
,
Abdelaziz
,
H.
,
Hajjaji Ahmed
,
E.
, and
Houssaine Tissir
,
E.
,
2019
, “
New Approach to Robust Observer-Based Control of One-Sided Lipschitz Non-Linear Systems
,”
IET Control Theory Appl.
,
13
(
3
), pp.
333
342
.10.1049/iet-cta.2018.5389
You do not currently have access to this content.