Abstract

The standard techniques used to detect misalignment in rotor systems are loopy orbits, multiple harmonics with predominant 2X component, and high axial vibration. This paper develops a new approach for the identification of misalignment in coupled rotor systems modeled using two-node Timoshenko beam finite elements. The coupling connecting the turbine and generator rotor systems is modeled by a stiffness matrix, which has both static and additive components. While the magnitude of static stiffness component is fixed during operation, the time-varying additive stiffness component displays a multiharmonic behavior and exists only in the presence of misalignment. To numerically simulate the multiharmonic nature coupling force/moment as observed in experiments, a pulse wave is used as the steering function in the mathematical model of the additive coupling stiffness (ACS). The representative turbogenerator (TG) system has two rotor systems, each having two disks and supported on two flexible bearings—connected by coupling. An active magnetic bearing (AMB) is used as an auxiliary bearing on each rotor for the purposes of vibration suppression and fault identification. The formulation of mathematical model is followed by the development of an identification algorithm based on the model developed, which is an inverse problem. Least-squares linear regression technique is used to identify the unbalances, bearing dynamic parameters, AMB constants, and importantly the coupling static and additive stiffness coefficients. The sensitivity of the identification algorithm to signal noise and bias errors in modeling parameters has been tested. The novelty of paper is the representation and identification of misalignment using the ACS matrix coefficients, which are direct indicators of both type and severity of the misalignment.

References

1.
Tiwari
,
R.
,
2017
,
Rotor Systems: Analysis and Identification
,
CRC Press/Taylor & Francis Group
,
Boca Raton, FL
.
2.
Macmillan
,
R.
,
B.
,
2003
,
Rotating Machinery: Practical Solutions to Unbalance and Misalignment
,
Fairmont Press
,
GA
.
3.
Piotrowski
,
S.
,
2006
,
Shaft Alignment Handbook
,
CRC Press
,
Boca Raton, FL
.
4.
Wowk
,
V.
,
2000
,
Machine Vibration: Alignment
,
McGraw-Hill
,
New York
.
5.
Gibbons
,
C. B.
,
1976
, “
Coupling Misalignment Forces
,”
Proceedings of Fifth Turbomachinery Symposium, Gas Turbine Laboratories
,
Texas A&M University
, College Station, TX, pp.
111
116
.
6.
Sekhar
,
A. S.
, and
Prabhu
,
B. S.
,
1995
, “
Effects of Coupling Misalignment on Vibrations of Rotating Machinery
,”
J. Sound Vib.
,
185
(
4
), pp.
655
671
.10.1006/jsvi.1995.0407
7.
Lal
,
M.
, and
Tiwari
,
R.
,
2012
, “
Multiple Fault Identification in Simple Rotor-Bearing-Coupling Systems Based on Forced Response Measurements
,”
Mech. Mach. Theory
,
51
, pp.
87
109
.10.1016/j.mechmachtheory.2012.01.001
8.
Lal
,
M.
, and
Tiwari
,
R.
,
2018
, “
Experimental Identification of Shaft Misalignment in a Turbo-Generator System
,”
Sadhana
,
43
(
80
), pp.
1
20
.10.1007/s12046-018-0859-1
9.
Patel
,
T.
, and
Darpe
,
A. K.
,
2009
, “
Experimental Investigations on Vibration Response of Misaligned Rotors
,”
Mech. Syst. Signal Process.
,
23
(
7
), pp.
2236
2252
.10.1016/j.ymssp.2009.04.004
10.
Lees
,
A. W.
,
2007
, “
Misalignment in Rigidly Coupled Rotors
,”
J. Sound Vib.
,
305
(
1–2
), pp.
261
271
.10.1016/j.jsv.2007.04.008
11.
Lee
,
Y. S.
, and
Lee
,
C. W.
,
1999
, “
Modelling and Vibration Analysis of Misaligned Rotor-Ball Bearing Systems
,”
J. Sound Vib.
,
224
(
1
), pp.
17
32
.10.1006/jsvi.1997.1301
12.
Hussain
,
K. M.
, and
Redmond
,
I.
,
2002
, “
Dynamic Response of Two Rotors Connected by Rigid Mechanical Coupling With Parallel Misalignment
,”
J. Sound Vib.
,
249
(
3
), pp.
483
498
.10.1006/jsvi.2001.3866
13.
Rao
,
J. S.
,
Sreenivas
,
R.
, and
Chawla
,
A.
,
2001
, “
Experimental Investigation of Misaligned Rotors
,”
ASME
Paper No. 2001-GT-0253.10.1115/2001-GT-0253
14.
Monte
,
M.
,
Verbelen
,
F.
, and
Vervisch
,
B.
,
2014
, “
The Use of Orbitals and Full Spectra to Identify Misalignment
,”
Struct. Health Monit.
,
5
, pp.
215
222
.10.1007/978-3-319-04570-2_24
15.
Xu
,
M.
, and
Marangoni
,
D.
,
1994
, “
Vibration Analysis of a Motor—Flexible Coupling—Rotor System Subjected to Misalignment and Unbalance, Part I: Theoretical Model
,”
J. Sound Vib.
,
176
(
5
), pp.
663
680
.10.1006/jsvi.1994.1405
16.
Xu
,
M.
, and
Marangoni
,
D.
,
1994
, “
Vibration Analysis of a Motor—Flexible Coupling—Rotor System Subjected to Misalignment and Unbalance, PART II: Experimental Validation
,”
J. Sound Vib.
,
176
(
5
), pp.
681
691
.10.1006/jsvi.1994.1406
17.
Saavedra
,
P. N.
, and
Ramirez
,
D. E.
,
2004
, “
Vibration Analysis of Rotors for the Identification of Shaft Misalignment Part 1: Theoretical Analysis
,” Proc. Inst. Mech. Eng.
Part C
,
218
(
9
), pp.
971
985
.10.1243/0954406041991297
18.
Saavedra
,
P. N.
, and
Ramirez
,
D. E.
,
2004
, “
Vibration Analysis of Rotors for the Identification of Shaft Misalignment Part 2: Experimental Validation
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
9
), pp.
987
999
.10.1243/0954406041991198
19.
Chandra
,
N. H.
, and
Sekhar
,
A. S.
,
2016
, “
Fault Detection in Rotor Bearing Systems Using Time Frequency Techniques
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
105
133
.10.1016/j.ymssp.2015.11.013
20.
Sinha
,
J. K.
,
2007
, “
Higher Order Spectra for Crack and Misalignment Identification in the Shaft of a Rotating Machine
,”
Struct. Health Monit.
,
6
(
4
), pp.
325
334
.10.1177/1475921707082309
21.
Siva Srinivas
,
R.
,
Tiwari
,
R.
, and
Kannababu
,
C.
,
2018
, “
Application of Active Magnetic Bearings in Flexible Rotor Dynamic Systems—A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
106
, pp.
537
572
.10.1016/j.ymssp.2018.01.010
22.
Siva Srinivas
,
R.
,
Tiwari
,
R.
, and
Kannababu
,
C.
,
2019
, “
Model Based Analysis and Identification of Multiple Fault Parameters in Coupled Rotor Systems With Offset Discs in the Presence of Misalignment and Integrated With an Active Magnetic Bearing
,”
J. Sound Vib.
,
450
, pp.
109
140
.10.1016/j.jsv.2019.03.007
23.
Gerami
,
A.
,
Fittro
,
R.
, and
Knospe
,
C.
,
2020
, “
Improving Disturbance Rejection in Nonlinear Active Magnetic Bearing Systems: Using Lur'e Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
4
), p.
041007
.10.1115/1.4045778
24.
Chen
,
W. J.
, and
Gunter
,
E. J.
,
2007
,
Introduction to Dynamics of Rotor Bearing Systems
,
Trafford Publications
,
Bloomington, IN
.
25.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
,
98
(
2
), pp.
593
600
.10.1115/1.3438942
26.
Nelson
,
H. D.
,
1985
, “
Rotor Dynamics Equations in Complex Form
,”
ASME J. Vib., Acoust., Stress, Reliab.
,
107
(
4
), pp.
460
461
.10.1115/1.3269288
27.
Chen
,
W. J.
,
1998
, “
A Note on Computational Rotor Dynamics
,”
ASME J. Vib. Acoust.
,
120
(
1
), pp.
228
233
.10.1115/1.2893810
28.
Singh
,
S.
, and
Tiwari
,
R.
,
2016
, “
Model Based Switching Crack Identification in a Jeffcott Rotor With an Offset Disc Integrated With an Active Magnetic Bearing
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
3
), p.
031006
.10.1115/1.4032292
29.
Friswell
,
M. I.
,
Penny
,
J. E. T.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Dynamics of Rotating Machines
,
Cambridge University Press
,
New York
.
30.
Das
,
A. S.
,
Dutt
,
J. K.
, and
Ray
,
K.
,
2011
, “
Active Control of Coupled Flexural-Torsional Vibration in a Flexible Rotor System Using Electromagnetic Actuator
,”
Int. J. Non-Linear Mech.
,
46
(
9
), pp.
1093
1109
.10.1016/j.ijnonlinmec.2011.03.005
31.
Qu
,
Z. Q.
,
2004
,
Model Order Reduction Techniques with Applications in Finite Element Analysis
,
Springer-Verlag
,
London
.
32.
Prasad
,
V.
, and
Tiwari
,
R.
,
2019
, “
Identification of Speed-Dependent Active Magnetic Bearing Parameters and Rotor Balancing in High-Speed Rotor Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
4
), pp.
1
10
.10.1115/1.4042026
33.
Shravankumar
,
C.
, and
Tiwari
,
R.
,
2013
, “
Identification of Stiffness and Periodic Breathing Forces of a Transverse Switching Crack in a Laval Rotor
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
3
), pp.
254
269
.10.1111/j.1460-2695.2012.01718.x
34.
Bordoloi
,
D. J.
, and
Tiwari
,
R.
,
2013
, “
Optimization of Controller Parameters of Active Magnetic Bearings in Rotor Bearing Systems
,”
Adv. Vib. Eng.
,
12
, pp.
319
327
.https://www.springer.com/journal/42417
35.
Yan Hong
,
M.
,
Zhichao
,
L.
,
Meng
,
C.
, and
Jie
,
H.
,
2013
, “
Interval Analysis of Rotor Dynamic Response With Uncertain Parameters
,”
J. Sound Vib.
,
332
(
16
), pp.
3869
3880
.10.1016/j.jsv.2013.03.001
36.
Chiang
,
C. C.
,
2007
, “
Scaling Algorithms for Matrices
,”
Thesis, Doctor of Philosophy
,
Oklahoma State University
,
Stillwater, OK
.
37.
Moradi
,
M.
,
2018
, “
Solving Ill-Conditioned Linear Equations Using Simulated Annealing Method
,”
J. Hyper Struct.
,
7
, pp.
60
66
.http://jhs-uma.com/index.php/JHSMS/article/view/327
You do not currently have access to this content.