Abstract

A new active disturbance rejection control-based (ADRC) scheme is proposed in this work to address the problem of tracking/rejecting periodic signals of unknown and varying frequencies. The frequencies are obtained online with a dedicated adaptive estimator and used in real-time as partial model information to an observer that reconstructs (among other things) the negative influence of periodic terms on the controlled output. A continuously updated two-tier control action is then applied to compensate the periodic interference and govern the resultant (simplified) plant dynamics. The proposed control topology is derived here in its general form and validated with an experimental case study.

References

1.
Wang
,
Y.
,
Gao
,
F.
, and
Doyle
,
F. J.
,
2009
, “
Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control
,”
J. Process Control
,
19
(
10
), pp.
1589
1600
.10.1016/j.jprocont.2009.09.006
2.
Francis
,
B.
, and
Wonham
,
W.
,
1976
, “
The Internal Model Principle of Control Theory
,”
Automatica
,
12
(
5
), pp.
457
465
.10.1016/0005-1098(76)90006-6
3.
Datta
,
A.
,
1998
,
Adaptive Internal Model Control
,
Springer
,
London, UK
.
4.
Hu
,
J.-S.
,
1992
, “
Variable Structure Digital Repetitive Controller
,”
Proceedings American Control Conference
,
Chicago, IL
, June 24–26, pp.
2686
2690
.10.23919/ACC.1992.4792630
5.
Tsao
,
T.-C.
,
Qian
,
Y.-X.
, and
Nemani
,
M.
,
2000
, “
Repetitive Control for Asymptotic Tracking of Periodic Signals With an Unknown Period
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
2
), pp.
364
369
.10.1115/1.482474
6.
Steinbuch
,
M.
,
Weiland
,
S.
, and
Singh
,
T.
,
2007
, “
Design of Noise and Period-Time Robust High-Order Repetitive Control With Application to Optical Storage
,”
Automatica
,
43
(
12
), pp.
2086
2095
.10.1016/j.automatica.2007.04.011
7.
Olm
,
J. M.
,
Ramos
,
G. A.
, and
Costa-Castelló
,
R.
,
2010
, “
Adaptive Compensation Strategy for the Tracking/Rejection of Signals With Time-Varying Frequency in Digital Repetitive Control Systems
,”
J. Process Control
,
20
(
4
), pp.
551
558
.10.1016/j.jprocont.2010.02.002
8.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
9.
Gao
,
Z.
,
2014
, “
On the Centrality of Disturbance Rejection in Automatic Control
,”
ISA Trans.
,
53
(
4
), pp.
850
857
.10.1016/j.isatra.2013.09.012
10.
Madoński
,
R.
, and
Herman
,
P.
,
2015
, “
Survey on Methods of Increasing the Efficiency of Extended State Disturbance Observers
,”
ISA Trans.
,
56
, pp.
18
27
.10.1016/j.isatra.2014.11.008
11.
Chen
,
W. H.
,
Yang
,
J.
,
Guo
,
L.
, and
Li
,
S.
,
2016
, “
Disturbance-Observer-Based Control and Related Methods—An Overview
,”
IEEE Trans. Ind. Electron.
,
63
(
2
), pp.
1083
1095
.10.1109/TIE.2015.2478397
12.
Chen
,
S.
,
Bai
,
W.
,
Hu
,
Y.
,
Huang
,
Y.
, and
Gao
,
Z.
,
2020
, “
On the Conceptualization of Total Disturbance and Its Profound Implications
,”
Sci. China. Inf. Sci.
,
6
3
, p. 129201.https://doi.org/10.1007/s11432-018-9644-3
13.
Madonski
,
R.
, and
Herman
,
P.
,
2013
, “
On the Usefulness of Higher-Order Disturbance Observers in Real Control Scenarios Based on Perturbation Estimation and Mitigation
,”
International Workshop Robot Motion Control
, Kuslin, Poland, July 3–5, pp.
252
257
.10.1109/RoMoCo.2013.6614617
14.
Cortes-Romero
,
J.
,
Ramos
,
G. A.
, and
Coral-Enriquez
,
H.
,
2014
, “
Generalized Proportional Integral Control for Periodic Signals Under Active Disturbance Rejection Approach
,”
ISA Trans.
,
53
(
6
), pp.
1901
1909
.10.1016/j.isatra.2014.07.001
15.
Ramos
,
G.
,
Cortes-Romero
,
J.
, and
Coral-Enriquez
,
H.
,
2015
, “
Spatial Observer-Based Repetitive Controller: An Active Disturbance Rejection Approach
,”
Control Eng. Pract.
,
42
, pp.
1
11
.10.1016/j.conengprac.2015.05.002
16.
Coral-Enriquez
,
H.
,
Cortés-Romero
,
J.
, and
Dorado-Rojas
,
S. A.
,
2019
, “
Rejection of Varying-Frequency Periodic Load Disturbances in Wind-Turbines Through Active Disturbance Rejection-Based Control
,”
Renewable Energy
,
141
, pp.
217
235
.10.1016/j.renene.2019.04.001
17.
Stankovic
,
M. R.
,
Rapaic
,
M. R.
,
Manojlovic
,
S. M.
,
Mitrovic
,
S. T.
,
Simic
,
S. M.
, and
Naumovic
,
M. B.
,
2017
, “
Optimised Active Disturbance Rejection Motion Control With Resonant Extended State Observer
,”
Int. J. Control
,
92
(
8
), pp.
1815
1826
.10.1080/00207179.2017.1414308
18.
Madonski
,
R.
,
Ramirez-Neria
,
M.
,
Stankovic
,
M.
,
Shao
,
S.
,
Gao
,
Z.
,
Yang
,
J.
, and
Li
,
S.
,
2019
, “
On Vibration Suppression and Trajectory Tracking in Largely Uncertain Torsional System: An Error-Based ADRC Approach
,”
Mech. Syst. Signal Process.
,
134
, p.
106300
.10.1016/j.ymssp.2019.106300
19.
Stankovic
,
M. R.
,
Madonski
,
R.
,
Shao
,
S.
, and
Mikluc
,
D.
,
2020
, “
On Dealing With Harmonic Uncertainties in the Class of Active Disturbance Rejection Controllers
,”
Int. J. Control
, epub.10.1080/00207179.2020.1736639
20.
Madonski
,
R.
,
Ramirez-Neria
,
M.
,
Gao
,
Z.
,
Yang
,
J.
, and
Li
,
S.
,
2019
, “
Attenuation of Periodic Disturbances Via Customized ADRC Solution: A Case of Highly Oscillatory 3DOF Torsional Plant
,”
Data Driven Control and Learning Systems Conference
, Dali, China, May 24–27, pp.
1111
1116
.
21.
Łakomy
,
K.
,
Patelski
,
R.
, and
Pazderski
,
D.
,
2020
, “
ESO Architectures in the Trajectory Tracking ADR Controller for a Mechanical System: A Comparison
,”
In Advanced, Contemporary Control
,
Springer
, Cham, Switzerland, pp.
1323
1335
.
22.
Yan
,
Y.
,
Yang
,
J.
,
Sun
,
Z.
,
Zhang
,
C.
,
Li
,
S.
, and
Yu
,
H.
,
2018
, “
Robust Speed Regulation for PMSM Servo System With Multiple Sources of Disturbances Via an Augmented Disturbance Observer
,”
IEEE/ASME Trans. Mechatronics
,
23
(
2
), pp.
769
780
.10.1109/TMECH.2018.2799326
23.
Chen
,
W. H.
,
2003
, “
Harmonic Disturbance Observer for Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
1
), pp.
114
117
.10.1115/1.1543551
24.
Wang
,
Z.
,
Yan
,
Y.
,
Yang
,
J.
,
Li
,
S.
, and
Li
,
Q.
,
2019
, “
Robust Voltage Regulation of a DC-AC Inverter With Load Variations Via a HDOBC Approach
,”
IEEE Trans. Circuits Syst. II Express Briefs
,
66
(
7
), pp.
1172
–117
5
.10.1109/TCSII.2018.2872330
25.
Umeno
,
T.
, and
Hori
,
Y.
,
1991
, “
Robust Speed Control of dc Servomotors Using Modern Two Degrees-of-Freedom Controller Design
,”
IEEE Trans. Ind. Electron.
,
38
(
5
), pp.
363
368
.10.1109/41.97556
26.
Yang
,
J.
,
Ding
,
Z.
,
Chen
,
W. H.
, and
Li
,
S.
,
2016
, “
Output-Based Disturbance Rejection Control for Non-Linear Uncertain Systems With Unknown Frequency Disturbances Using an Observer Backstepping Approach
,”
IET Control Theory Appl.
,
10
(
9
), pp.
1052
1060
.10.1049/iet-cta.2015.1160
27.
Xia
,
X.
,
2002
, “
Global Frequency Estimation Using Adaptive Identifiers
,”
IEEE Trans. Autom. Control
,
47
(
7
), pp.
1188
1193
.10.1109/TAC.2002.800670
28.
Hou
,
M.
,
2007
, “
Estimation of Sinusoidal Frequencies and Amplitudes Using Adaptive Identifier and Observer
,”
IEEE Trans. Autom. Control
,
52
(
3
), pp.
493
499
.10.1109/TAC.2006.890389
29.
Madonski
,
R.
,
Stankovic
,
M.
,
Shao
,
S.
,
Gao
,
Z.
,
Yang
,
J.
, and
Li
,
S.
,
2020
, “
Active Disturbance Rejection Control of Torsional Plant With Unknown Frequency Harmonic Disturbance
,”
Control Eng. Pract.
,
100
, p.
104413
.10.1016/j.conengprac.2020.104413
30.
Ramírez-Neria
,
M.
,
Sira-Ramírez
,
H.
,
Garrido-Moctezuma
,
R.
, and
Luviano-Juárez
,
A.
,
2016
, “
On the Linear Control of Underactuated Nonlinear Systems Via Tangent Flatness and Active Disturbance Rejection Control: The Case of the Ball and Beam System
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
10
), p. 104501.10.1115/1.4033313
31.
Stankovic
,
M. R.
,
Manojlovic
,
S. M.
,
Simic
,
S. M.
,
Mitrovic
,
S. T.
, and
Naumovic
,
M. B.
,
2016
, “
FPGA System-Level Based Design of Multi-Axis ADRC Controller
,”
Mechatronics
,
40
, pp.
146
155
.10.1016/j.mechatronics.2016.10.005
32.
Ramirez-Neria
,
M.
,
Madonski
,
R.
,
Shao
,
S.
, and
Gao
,
Z.
,
2020
, “
Robust Tracking in Underactuated Systems Using Flatness-Based ADRC With Cascade Observers
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
9
), p.
091002
.10.1115/1.4046799
33.
Xue
,
W.
, and
Huang
,
Y.
,
2015
, “
Performance Analysis of Active Disturbance Rejection Tracking Control for a Class of Uncertain LTI Systems
,”
ISA Trans.
,
58
, pp.
133
154
.10.1016/j.isatra.2015.05.001
34.
Gliklikh
,
Y.
,
2006
, “
Necessary and Sufficient Conditions for Global-in-Time Existence of Solutions of Ordinary, Stochastic, and Parabolic Differential Equations
,”
Abstract Appl. Anal.
,
2006
(
39786
), pp.
1
17
.10.1155/AAA/2006/39786
35.
Michałek
,
M. M.
,
2016
, “
Robust Trajectory Following Without Availability of the Reference Time-Derivatives in the Control Scheme With Active Disturbance Rejection
,”
American Control Conference
, Boston, MA, July 6–8, pp.
1536
1541
.10.1109/ACC.2016.7525134
36.
Zhang
,
H.
,
2017
, “
Information Driven Control Design: A Case for PMSM Control
,” Doctoral dissertation,
Cleveland State University
,
Cleveland, OH
.
37.
Madonski
,
R.
,
Shao
,
S.
,
Zhang
,
H.
,
Gao
,
Z.
,
Yang
,
J.
, and
Li
,
S.
,
2019
, “
General Error-Based Active Disturbance Rejection Control for Swift Industrial Implementations
,”
Control Eng. Pract.
,
84
, pp.
218
229
.10.1016/j.conengprac.2018.11.021
38.
Łakomy
,
K.
, and
Michałek
,
M. M.
,
2020
, “
Robust Output-Feedback VFO-ADR Control of Underactuated Spatial Vehicles in the Task of Following Non-Parametrized Paths
,”
Eur. J. Control
, In press.
39.
Ramirez-Neria
,
M.
,
Madonski
,
R.
,
Luviano-Juarez
,
A.
,
Gao
,
Z.
, and
Sira-Ramirez
,
H.
,
2020
, “
Design of ADRC for Second-Order Mechanical Systems Without Time-Derivatives in the Tracking Controller
,”
American Control Conference
,
Denver, CO
, July 1–3, pp.
2623
2628
.
40.
Stankovic
,
M.
,
Madonski
,
R.
,
Manojlovic
,
S.
,
Lechekhab
,
T. E.
, and
Mikluc
,
D.
,
2020
, “
Error-Based Active Disturbance Rejection Altitude/Attitude Control of a Quadrotor UAV
,”
Advanced, Contemporary Control
,
Springer
,
Cham, Switzerland
, pp.
1348
1358
.
41.
Gao
,
Z.
,
2003
, “
Scaling and Bandwidth-Parameterization Based Controller Tuning
,”
American Control Conference
, Vol.
6
,
Denver, CO
, pp.
4989
4996
.
42.
Sastry
,
S.
, and
Bodson
,
M.
,
1989
,
Adaptive Control: Stability, Convergence and Robustness
,
Prentice Hall
,
Engelwood Cliffs, NJ
.
You do not currently have access to this content.