Abstract

The development of vehicle connectivity and autonomy in the ground transportation sector is not only able to enhance traffic safety and driving comfort as well as fuel economy. This study presents a receding-horizon optimization-based control strategy integrated with the preceding vehicle speed prediction model to achieve an eco-driving strategy for connected and automated vehicles (CAVs). In the real traffic scenario where the CAV follows the preceding vehicle on the road, a gated recurrent unit (GRU) network is used to predict the behavior of the preceding vehicle by utilizing the historical inter-vehicle information collected through on-board sensors. Then, a nonlinear model predictive control (NMPC) algorithm is adopted for CAV to minimize the accumulated fuel consumption within the preview horizon. The NMPC approach solves the fuel-optimal speed profile of the CAV, considering a predicted short-term speed preview of the preceding vehicle. With the awareness of the preview speed conditions, the fuel consumption of the CAV is reduced by avoiding unnecessary braking and acceleration, especially during transient traffic conditions. The Pareto front framework is used to examine a trade-off between the vehicle speed prediction accuracy, computational burden, and the fuel consumption of the CAV in the proposed GRU-NMPC design. To analyze the effectiveness of the GRU-NMPC design, adaptive cruise control with constant time headway policy (ACC-CTH) is adopted as a benchmark control design. Comparison results show significant fuel economy improvement of the proposed design and expose possible fuel benefits from vehicle autonomy and sensor fusion technology.

References

1.
U. S. E. P. Agency
,
2020
, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018,” Washington, DC, EPA 430-R-20-002.
2.
Hedges & Company, 2019, “U.S. Vehicle Registration Statistics,”
Hedges & Company Automotive Digital Marketing Agency, Hudson, OH, accessed Dec. 15, 2019, https://hedgescompany.com/automotive-market-research-statistics/auto-mailing-lists-and marketing/
3.
Treiber
,
M.
,
Kesting
,
A.
, and
Thiemann
,
C.
,
2008
, “
How Much Does Traffic Congestion Increase Fuel Consumption and Emissions? Applying Fuel Consumption Model to NGSIM Trajectory Data
,” in Annual Meeting of the Transportation Research Board, Washington, DC.
4.
Vahidi
,
A.
, and
Sciarretta
,
A.
,
2018
, “
Energy Saving Potentials of Connected and Automated Vehicles
,”
Transp. Res. Part C: Emerging Technol.
,
95
, pp.
822
843
.10.1016/j.trc.2018.09.001
5.
Imran
,
M. A.
,
Sambo
,
Y. A.
, and
Abbasi
,
Q. H.
,
2019
, “5G Communication Systems and Connected Healthcare,”
Enabling 5G Communication Systems to Support Vertical Industries
, Wiley, Hoboken, NJ.10.1002/9781119515579
6.
Bengler
,
K.
,
Dietmayer
,
K.
,
Farber
,
B.
,
Maurer
,
M.
,
Stiller
,
C.
, and
Winner
,
H.
,
2014
, “
Three Decades of Driver Assistance Systems: Review and Future Perspectives
,”
IEEE Intell. Transportation Syst. Mag.
,
6
(
4
), pp.
6
22
.10.1109/MITS.2014.2336271
7.
Lang
,
D.
,
Schmied
,
R.
, and
Del Re
,
L.
,
2014
, “
Prediction of Preceding Driver Behavior for Fuel Efficient Cooperative Adaptive Cruise Control
,”
SAE Int. J. Engines
,
7
(
1
), pp.
14
20
.10.4271/2014-01-0298
8.
Tay
,
C.
,
Mekhnacha
,
K.
, and
Laugier
,
C.
,
2012
, “
Probabilistic Vehicle Motion Modeling and Risk Estimation
,”
Handbook of Intelligent Vehicles
, Springer London, pp.
1479
1516
.10.1007/978-0-85729-085-4_57
9.
Ammoun
,
S.
, and
Nashashibi
,
F.
,
2009
, “
Real Time Trajectory Prediction for Collision Risk Estimation Between Vehicles
,”
IEEE Fifth International Conference on Intelligent Computer Communication and Processing
,
Cluj-Napoca, Romania
, Aug. 27–29, pp.
417
422
.10.1109/ICCP.2009.5284727
10.
Kamal
,
M. A. S.
,
Hayakawa
,
T.
, and
Imura
,
J.
,
2018
, “
Road-Speed Profile for Enhanced Perception of Traffic Conditions in a Partially Connected Vehicle Environment
,”
IEEE Trans. Veh. Technol.
,
67
(
8
), pp.
6824
6837
.10.1109/TVT.2018.2826067
11.
Wang
,
P.
,
Fu
,
Y.
,
Jiawei
,
Z.
,
Wang
,
P.
,
Zheng
,
Y.
, and
Aggarwal
,
C.
,
2018
, “
You Are How You Drive: Peer and Temporal-Aware Representation Learning for Driving Behavior Analysis
,”
Proceedings of the 24nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, ACM, New York, pp.
2457
2466
.10.1145/3219819.3219985
12.
Shih
,
C.
,
Huang
,
P.
,
Yen
,
E.
, and
Tsung
,
P.
,
2019
, “
Vehicle Speed Prediction With RNN and Attention Model Under Multiple Scenarios
,” IEEE Intelligent Transportation Systems Conference (
ITSC
),
Auckland, New Zealand
, Oct. 27–30, pp.
369
375
.10.1109/ITSC.2019.8917479
13.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.10.1162/neco.1997.9.8.1735
14.
Cho
,
K.
,
van Merrienboer
,
B.
,
Gulcehre
,
C.
,
Bougares
,
F.
,
Schwenk
,
H.
, and
Bengio
,
Y.
,
2014
, “
Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation
,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1724–1734.
15.
Altche
,
F.
, and
de La Fortelle
,
A.
,
2017
, “
An LSTM Network for Highway Trajectory Prediction
,” IEEE 20th International Conference on Intelligent Transportation Systems (
ITSC
), Yokohama, pp.
353
359
.https://www.researchgate.net/publication/322695256_An_LSTM_Network_for_Highway_Trajectory_Prediction
16.
Benterki
,
A.
,
Judalet
,
V.
,
Choubeila
,
M.
, and
Boukhnifer
,
M.
,
2019
, “
Long-Term Prediction of Vehicle Trajectory Using Recurrent Neural Networks
,”
IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society
,
Lisbon, Portugal
, Oct. 14–17, pp.
3817
3822
.10.1109/IECON.2019.8927604
17.
Kamal
,
M. A. S.
,
Ichi Imura
,
J.
,
Hayakawa
,
T.
,
Ohata
,
A.
, and
Aihara
,
K.
,
2014
, “
Smart Driving of a Vehicle Using Model Predictive Control for Improving Traffic Flow
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
2
), pp.
878
888
.10.1109/TITS.2013.2292500
18.
He
,
C. R.
,
Ge
,
J. I.
, and
Orosz
,
G.
,
2019
, “
Fuel Efficient Connected Cruise Control for Heavy-Duty Trucks in Real Traffic
,”
IEEE Trans. Control Syst. Technol.
, pp.
1
8 (epub
).10.1109/TCST.2019.2925583
19.
Dollar
,
R. A.
, and
Vahidi
,
A.
,
2018
, “
Efficient and Collision-Free Anticipative Cruise Control in Randomly Mixed Strings
,”
IEEE Trans. Intell. Veh.
,
3
(
4
), pp.
439
452
.10.1109/TIV.2018.2873895
20.
Lian
,
J.
,
Liu
,
S.
,
Li
,
L.
,
Liu
,
X.
,
Zhou
,
Y.
,
Yang
,
F.
, and
Yuan
,
L.
,
2017
, “
A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC) Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs)
,”
Energies
,
10
(
1
), p.
74
.10.3390/en10010074
21.
Ozkan
,
M. F.
, and
Ma
,
Y.
,
2020
, “
A Predictive Control Design With Speed Previewing Information for Vehicle Fuel Efficiency Improvement
,” American Control Conference (
ACC
),
Denver, CO
, July 1–3, pp.
2312
2317
.10.23919/ACC45564.2020.9147826
22.
Zhao
,
J.
,
Gao
,
Y.
,
Yang
,
Z.
,
Li
,
J.
,
Feng
,
Y.
,
Qin
,
Z.
, and
Bai
,
Z.
,
2019
, “
Truck Traffic Speed Prediction Under Non-Recurrent Congestion: Based on Optimized Deep Learning Algorithms and GPS Data
,”
IEEE Access
,
7
, pp.
9116
9127
.10.1109/ACCESS.2018.2890414
23.
Rahmati
,
Y.
,
Khajeh Hosseini
,
M.
,
Talebpour
,
A.
,
Swain
,
B.
, and
Nelson
,
C.
,
2019
, “
Influence of Autonomous Vehicles on Car-Following Behavior of Human Drivers
,”
Transp. Res. Rec.: J. Transp. Res. Board
,
2673
(
12
), pp.
367
379
.10.1177/0361198119862628
24.
Bouktif
,
S.
,
Fiaz
,
A.
,
Ouni
,
A.
, and
Serhani
,
M.
,
2018
, “
Optimal Deep Learning LSTM Model for Electric Load Forecasting Using Feature Selection and Genetic Algorithm: Comparison With Machine Learning Approaches †
,”
Energies
,
11
(
7
), p.
1636
.10.3390/en11071636
25.
Park
,
S.
,
Rakha
,
H.
,
Ahn
,
K.
, and
Moran
,
K.
,
2013
, “
Virginia Tech Comprehensive Power-Based Fuel Consumption Model (VT-CPFM): Model Validation and Calibration Considerations
,”
Int. J. Transp. Sci. Technol.
,
2
(
4
), pp.
317
336
.10.1260/2046-0430.2.4.317
26.
Rakha
,
H.
,
Ahn
,
K.
,
Moran
,
K.
,
Saerens
,
B.
, and
Bulck
,
E.
,
2011
, “
Virginia Tech Comprehensive Power-Based Fuel Consumption Model: Model Development and Testing
,”
Transp. Res. Part D: Transp. Environ.
,
16
(
7
), pp.
492
503
.10.1016/j.trd.2011.05.008
27.
Wong
,
J. Y.
,
2011
,
Theory of Ground Vehicles
,
Wiley
,
New York
.
28.
Khodayari
,
A.
,
Ghaffari
,
A.
,
Nouri
,
M.
,
Salehinia
,
S.
, and
Alimardani
,
F.
,
2012
, “
Model Predictive Control System Design for Car-Following Behavior in Real Traffic Flow
,” IEEE International Conference on Vehicular Electronics and Safety (
ICVES 2012
),
Istanbul, Turkey
, July 24–27, pp.
87
92
.10.1109/ICVES.2012.6294283
29.
Swaroop
,
D.
, and
Rajagopal
,
K. R.
,
2001
, “
A Review of Constant Time Headway Policy for Automatic Vehicle Following
,” 2001 IEEE Intelligent Transportation Systems (
ITSC 2001
),
Oakland, CA
, Aug. 25–29, pp.
65
69
.10.1109/ITSC.2001.948631
30.
Darbha
,
S.
, and
Hedrick
,
J.
,
1999
, “
Constant Spacing Strategies for Platooning in Automated Highway Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
3
), pp.
462
470
.10.1115/1.2802497
31.
Karavalakis
,
G.
,
Short
,
D.
,
Hajbabaei
,
M.
,
Vu
,
D.
,
Villela
,
M.
,
Russell
,
R.
,
Durbin
,
T.
, and
Asa-Awuku
,
A.
,
2013
, “
Criteria Emissions, Particle Number Emissions, Size Distributions, and Black Carbon Measurements From PFI Gasoline Vehicles Fuelled With Different Ethanol and Butanol Blends
,”
SAE
Paper No. 2013-01-1147.10.4271/2013-01-1147
32.
Hoes
,
R.
,
Basten
,
T.
,
Tham
,
C. K.
,
Geilen
,
M.
, and
Corporaal
,
H.
,
2009
, “
Quality-of-Service Trade-Off Analysis for Wireless Sensor Networks
,”
Perform. Eval.
,
66
(
3–5
), pp.
191
208
.10.1016/j.peva.2008.10.007
33.
Geilen
,
M.
, and
Basten
,
T.
,
2007
, “
A Calculator for Pareto Points
,”
Design, Automation and Test in Europe Conference and Exhibition
, Apr. 16–20,
Nice, France
, pp.
1
6
.
34.
NREL DriveCAT,
2019
, “
Chassis Dynamometer Drive Cycles
,” National Renewable Energy Laboratory, Golden, CO, accessed December 15, 2019, www.nrel.gov/transportation/drive-cycle-tool
You do not currently have access to this content.