Abstract

Under near-vacuum conditions, the fluid frictional dissipation or approximately the inverse of the quality factor of a microcantilever once the intrinsic dissipation can be neglected is proportional to the low pressure. We shall investigate the dynamic behavior of micro-electromechanical systems (MEMS) devices via the calculation of the quality factor or frictional damping forces resulting from surrounding gases. Here, we illustrated some specific examples relevant to the computation of the quality factor or dynamical friction for an oscillating microcantilever in air via measurements of the paper of Okada et al. (Okada, H., Itoh, T., and Suga, T., 2008, Wafer Level Sealing Characterization Method Using Si Micro Cantilevers,” Sens. Actuators A, 147(2), pp. 359–364) considering the quality factors of the CM (a label for a microcantilever: 500 × 90 × 5 μm3 Si microcantilever (the measured resonance frequency: 23.7 kHz) and the paper of Kara et al. (Kara, V., Yakhot, V., and Ekinci, K. L., 2017, Generalized Knudsen Number for Unsteady Fluid Flow, Phys. Rev. Lett., 118(7), p. 074505) in rarefied gases regime. We present the corrected quality factor or dynamical friction over the whole range of the Knudsen number considering the CM part by Okada et al. Our new plot considering the quality factor which is proportional to the inverse of the dissipative friction parameter per unit length, pressure as well as the Knudsen number over the whole range should be useful to researchers in this field.

References

References
1.
Wang
,
X.
,
Bleiker
,
S. J.
,
Edinger
,
P.
,
Errando-Herranz
,
C.
,
Roxhed
,
N.
,
Stemme
,
G.
,
Gylfason
,
K. B.
, and
Niklaus
,
F.
,
2019
, “
Wafer-Level Vacuum Sealing by Transfer Bonding of Silicon Caps for Small Footprint and Ultra-Thin MEMS Packages
,”
J. MEMS
,
28
(
3
), pp.
460
471
.10.1109/JMEMS.2019.2910985
2.
Van Toan
,
N.
,
Wang
,
X. Y.
,
Inomata
,
N.
,
Toda
,
M.
,
Voiculescu
,
I.
, and
Ono
,
T.
,
2019
, “
Low Cost and High-Aspect Ratio Micro/Nano Device Fabrication by Using Innovative Metal-Assisted Chemical Etching Method
,”
Adv. Eng. Mater.
,
21
(
8
), p.
1900490
.10.1002/adem.201900490
3.
Zhang
,
X.
,
Adelegan
,
O. J.
,
Yamaner
,
F. Y.
, and
Oralkan
,
Ö.
,
2018
, “
A Fast-Switching (1.35-μs) Low-Control-Voltage (2.5-V) MEMS T/R Switch Monolithically Integrated With a Capacitive Micromachined Ultrasonic Transducer
,”
J. MEMS
,
27
(
2
), pp.
190
200
.10.1109/JMEMS.2017.2781255
4.
Fedeli
,
P.
,
Frangi
,
A.
,
Laghi
,
G.
,
Langfelder
,
G.
, and
Gattere
,
G.
,
2017
, “
Near Vacuum Gas Damping in MEMS: Simplified Modeling
,”
J. MEMS
,
26
(
3
), pp.
632
642
.10.1109/JMEMS.2017.2686650
5.
Yang
,
W.
,
Li
,
H.
,
Chatterjee
,
A. N.
,
Elfadel
,
I. M.
,
Ocak
,
I. E.
, and
Zhang
,
J. J.
,
2017
, “
A Novel Approach to the Analysis of Squeezed-Film Air Damping in Microelectromechanical System
,”
J. Micromech. Microeng.
,
27
(
1
), p.
015012
.10.1088/0960-1317/27/1/015012
6.
An
,
S.
,
Qin
,
Y.
, and
Gianchandani
,
Y. B.
,
2015
, “
A Monolithic High-Flow Knudsen Pump Using Vertical Al2O3 Channels in SOI
,”
J. MEMS
,
24
(
5
), pp.
1606
1615
.10.1109/JMEMS.2015.2426699
7.
Babayevsky
,
P. G.
,
Zhukova
,
S. A.
,
Obizhaev
,
D. Y.
,
Grinkin
,
E. A.
,
Turkov
,
V. E.
,
Reznichenko
,
G. M.
,
Riskin
,
D. D.
, and
Bychkova
,
Y. A.
,
2014
, “
MEMS Sensor Vacuum Wafer Level Packaging (Analytical Rev.)—Part 1: Wafer Bonding and Dicing Technologies, Local Hermetic Sealing (Vacuum Encapsulation) of MEMS Sensor Sensitive Elements
,”
Nano- Mikrosist. Tekh.
,
3
, pp.
3
12
.
8.
Bhiladvala
,
R. B.
, and
Wang
,
Z. J.
,
2004
, “
Effect of Fluids on the Q Factor and Resonance Frequency of Oscillating Micrometer and Nanometer Scale Beams
,”
Phys. Rev. E
,
69
(
3
), p.
036307
.10.1103/PhysRevE.69.036307
9.
Hutcherson
,
S.
, and
Ye
,
W. J.
,
2004
, “
On the Squeeze-Flim Damping of Micro Resonators in the Free-Molecule Regime
,”
J. Micromech. Microeng.
,
14
(
12
), pp.
1726
1733
.10.1088/0960-1317/14/12/018
10.
Yasumura
,
K. Y.
,
Stowe
,
T. D.
,
Chow
,
E. M.
,
Pfafman
,
T.
,
Kenny
,
T. W.
,
Stipe
,
B. C.
, and
Rugar
,
D.
,
2000
, “
Quality Factors in Micron- and Submicron-Thick Cantilevers
,”
J. MEMS
,
9
(
1
), pp.
117
125
.10.1109/84.825786
11.
Borman
,
V. D.
,
Krylov
,
S. Y.
, and
Kharitonov
,
A. M.
,
1987
, “
Transport Phenomena at a Gas-Solid Interface Due to Propagation of Surface Sound
,”
Sov. Phys. JETP
,
65
(
5
), pp.
935
943
.
12.
Krylov
,
V. V.
, and
Tilman
,
F. J. B. S.
,
2004
, “
Acoustic ‘Black Holes’ for Flexural Waves as Effective Vibration Dampers
,”
J. Sound Vib.
,
274
(
3–5
), pp.
605
619
.10.1016/j.jsv.2003.05.010
13.
Chu
,
K.-H. W.
,
2001
, “
Transport Within a Microtube Induced by a Surface Acoustic Wave
,”
Eur. Phys. J. Appl. Phys.
,
13
(
2
), pp.
147
152
.10.1051/epjap:2001126
14.
Okada
,
H.
,
Itoh
,
T.
, and
Suga
,
T.
,
2008
, “
Wafer Level Sealing Characterization Method Using Si Micro Cantilevers
,”
Sens. Actuators A
,
147
(
2
), pp.
359
364
.10.1016/j.sna.2008.05.012
15.
Gad-el-Hak
,
M.
,
1999
, “
The Fluid Mechanics of Microdevices
,”
ASME J. Fluids Eng.
,
121
(
1
), pp.
5
33
.10.1115/1.2822013
16.
Christian
,
R. G.
,
1966
, “
The Theory of Oscillating-Vane Vacuum Gauges
,”
Vacuum
,
16
(
4
), pp.
175
178
.10.1016/0042-207X(66)91162-6
17.
Kara
,
V.
,
Yakhot
,
V.
, and
Ekinci
,
K. L.
,
2017
, “
Generalized Knudsen Number for Unsteady Fluid Flow
,”
Phys. Rev. Lett.
,
118
(
7
), p.
074505
.10.1103/PhysRevLett.118.074505
18.
Blom
,
F. R.
,
Bouwstra
,
S.
,
Elwenspoek
,
M.
, and
Fiuitman
,
J. H. J.
,
1992
, “
Dependence of the Quality Factor of Micromachined Silicon Beam Resonators on Pressure and Geometry
,”
J. Vac. Sci. Technol. B
,
10
(
1
), pp.
19
26
.10.1116/1.586300
19.
Lu
,
C.
,
Li
,
P.
, and
Fang
,
Y.
,
2019
, “
Analytical Model of Squeeze Film Air Damping of Perforated Plates in the Free Molecular Regime
,”
Microsyst. Technol.
,
25
(
5
), pp.
1753
1761
.10.1007/s00542-019-04421-3
20.
Martin
,
M. J.
, and
Houston
,
B. H.
,
2009
, “
Free-Molecular Heat Transfer of Vibrating Cantilever and Bridges
,”
Phys. Fluids
,
21
(
1
), p.
017101
.10.1063/1.3055285
You do not currently have access to this content.