Abstract

Friction is an inherent nonlinearity in electromechanical systems. It adversely affects the system performance. The key challenge is to get its accurate information as it is not measurable. This paper proposes a two-observer concept for friction and state estimation. Novelty of proposal includes finite time convergent estimations of the friction component and the system states. These estimations are used to design a robust control for accurate position tracking in servosystem. It is shown that accurate friction and state estimations are obtained, and control efforts are reduced while achieving precise performance. Tracking performance is improved using proposed control. The outcome of the proposed methodology is validated through computer simulations and experimentations.

References

1.
Tanelli
,
M.
,
Piroddi
,
L.
, and
Savaresi
,
S. M.
,
2009
, “
Real-Time Identification of Tire-Road Friction Conditions
,”
IET Control Theory Appl.
,
3
(
7
), pp.
891
906
.10.1049/iet-cta.2008.0287
2.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
3.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
4.
Bonchis
,
A.
,
Corke
,
P. I.
,
Rye
,
D. C.
, and
Ha
,
Q. P.
,
2001
, “
Variable Structure Methods in Hydraulic Servo Systems Control
,”
Automatica
,
37
(
4
), pp.
589
595
.10.1016/S0005-1098(00)00192-8
5.
Alvarez
,
L.
,
Yi
,
J.
,
Horowitz
,
R.
, and
Olmos
,
L.
,
2005
, “
Dynamic Friction Model-Based Tire-Road Friction Estimation and Emergency Braking Control
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
22
32
.10.1115/1.1870036
6.
Wit
,
C. C. D.
, and
Tsiotras
,
P.
,
1999
, “
Dynamic Tire Friction Models for Vehicle Traction Control
,”
Proceedings of the 38th IEEE Conference on Decision and Control
, Vol.
4
, Phoenix, AZ, Dec. 7–10, pp.
3746
3751
.10.1109/CDC.1999.827937
7.
Amin, J., Friedland, B., and Harnoy, A., 1996, “Implementation of a Friction Estimation and Compensation Technique,”
Proceeding of the 1996 IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Control
, Dearborn, MI, Sept. 15–Nov. 18, pp. 804–808.10.1109/CCA.1996.558969
8.
Johnson
,
C. T.
, and
Lorenz
,
R. D.
,
1992
, “
Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms
,”
IEEE Trans. Ind. Appl.
,
28
(
6
), pp.
1392
1398
.10.1109/28.175293
9.
Tijani
,
I. B.
, and
Akmeliawati
,
R.
,
2012
, “
Support Vector Regression Based Friction Modeling and Compensation in Motion Control System
,”
Eng. Appl. Artif. Intell.
,
25
(
5
), pp.
1043
1052
.10.1016/j.engappai.2012.03.018
10.
Ha
,
Q. P.
,
Bonchis
,
A.
,
Rye
,
D. C.
, and
Durrant-Whyte
,
H. F.
,
2000
, “
Variable Structure Systems Approach to Friction Estimation and Compensation
,”
IEEE International Conference on Robotics and Automation Proceedings
, Vol.
4
, San Francisco, CA, Apr. 24–28, pp.
3543
3548
.10.1109/ROBOT.2000.845283
11.
Peng
,
Y.
,
Chen
,
J.
, and
Ma
,
Y.
,
2019
, “
Observer-Based Estimation of Velocity and Tire-Road Friction Coefficient for Vehicle Control Systems
,”
Nonlinear Dyn.
,
96
(
1
), pp.
363
387
.10.1007/s11071-019-04794-0
12.
Jinkun, L., and Lianjie, E., 2003, “Sliding Mode Controller Design for Position and Speed Control of Flight Simulator Servo System With Large Friction,”
J. Syst. Eng. Electron.
, 14(3), pp. 59–62.https://ieeexplore.ieee.org/document/6077526
13.
Sohl
,
G. A.
, and
Bobrow
,
J. E.
,
1999
, “
Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem
,”
IEEE Trans. Control Syst. Technol.
,
7
(
2
), pp.
238
247
.10.1109/87.748150
14.
Yao
,
J.
,
Deng
,
W.
, and
Jiao
,
Z.
,
2015
, “
Adaptive Control of Hydraulic Actuators With Lugre Model-Based Friction Compensation
,”
IEEE Trans. Ind. Electron.
,
62
(
10
), pp.
6469
6477
.10.1109/TIE.2015.2423660
15.
Edwards
,
C.
, and
Spurgeon
,
S.
,
1998
,
Sliding Mode Control: Theory and Applications
,
CRC Press
, Boca Raton, FL.
16.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Control
,
58
(
6
), pp.
1247
1263
.10.1080/00207179308923053
17.
Levant
,
A.
,
2003
, “
Higher-Order Sliding Modes, Differentiation and Output-Feedback Control
,”
Int. J. Control
,
76
(
9–10
), pp.
924
941
.10.1080/0020717031000099029
18.
Davila
,
J.
,
Fridman
,
L.
, and
Levant
,
A.
,
2005
, “
Second-Order Sliding-Modes Observer for Mechanical Systems
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1785
1789
.10.1109/TAC.2005.858636
19.
Moreno
,
J.
, and
Osorio
,
M.
,
2008
, “
A Lyapunov Approach to Second-Order Sliding Mode Controllers and Observers
,”
47th IEEE Conference on Decision and Control
, Cancun, Mexico, Dec. 9–11, pp.
2856
2861
.10.1109/CDC.2008.4739356
20.
Cruz-Zavala
,
E.
,
Moreno
,
J.
, and
Fridman
,
L.
,
2011
, “
Uniform Robust Exact Differentiator
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2727
2733
.10.1109/TAC.2011.2160030
21.
Xie
,
W.-F.
,
2007
, “
Sliding-Mode-Observer-Based Adaptive Control for Servo Actuator With Friction
,”
IEEE Trans. Ind. Electron.
,
54
(
3
), pp.
1517
1527
.10.1109/TIE.2007.894718
22.
Ruderman
,
M.
, and
Iwasaki
,
M.
,
2015
, “
Observer of Nonlinear Friction Dynamics for Motion Control
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5941
5949
.10.1109/TIE.2015.2435002
23.
Amthor
,
A.
,
Zschaeck
,
S.
, and
Ament
,
C.
,
2010
, “
High Precision Position Control Using an Adaptive Friction Compensation Approach
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
274
278
.10.1109/TAC.2009.2036307
24.
Moreno
,
J.
, and
Osorio
,
M.
,
2012
, “
Strict Lyapunov Functions for the Super-Twisting Algorithm
,”
IEEE Trans. Autom. Control
,
57
(
4
), pp.
1035
1040
.10.1109/TAC.2012.2186179
25.
Levant
,
A.
,
1998
, “
Robust Exact Differentiation Via Sliding Mode Technique
,”
Automatica
,
34
(
3
), pp.
379
384
.10.1016/S0005-1098(97)00209-4
26.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2005
, “
Geometric Homogeneity With Applications to Finite-Time Stability
,”
Math. Control, Signals, Syst.
,
17
(
2
), pp.
101
127
.10.1007/s00498-005-0151-x
You do not currently have access to this content.