Abstract

In aircraft engine control, replacing linear regulators by sliding mode control (SMC) regulators is considered as an effective approach to reducing the conservatism in the traditional treatment for limit protection. However, most of the relevant studies are based on linear descriptions, which cannot represent the nonlinear systems directly due to their limited valid range. Even if gain scheduling techniques are employed, the stability of the nonlinear systems cannot be theoretically guaranteed. In this paper, a sliding mode strategy for a class of uncertain linear parameter varying (LPV) systems is studied. LPV descriptions are applied to extend the valid range of the linear models covering the entire operation envelope with guaranteed performance and stability. The mismatch between LPV and the real systems is considered as uncertainties. With a sliding surface defined by the tracking errors, system properties on the surface are proved to be satisfactory. After that, a reaching law is designed to ensure global invariance of SMC. Based on a reliable model turbofan, simulation results show that the SMC method can fully exploit the limit margin and, compared to the traditional proportional-integral-derivative (PID) control, has a faster response. In addition, stability and effectiveness of the proposed method are verified in a temperature protection case.

References

References
1.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls: Design, System Analysis, and Health Monitoring
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
2.
Spang
,
H. A.
, and
Brown
,
H.
,
1999
, “
Control of Jet Engines
,”
Control Eng. Pract.
,
7
(
9
), pp.
1043
1059
.10.1016/S0967-0661(99)00078-7
3.
Pakmehr
,
M.
,
Fitzgerald
,
N.
,
Feron
,
E. M.
,
Shamma
,
J. S.
, and
Behbahani
,
A.
,
2014
, “
Gain Scheduled Control of Gas Turbine Engines: Stability and Verification
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), pp.
634
640
.10.1115/1.4025637
4.
Miotto
,
P.
,
1997
, “
Fixed Structure Methods for Flight Control Analysis and Automated Gain Scheduling
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
5.
Richter
,
H.
, and
Litt
,
J.
,
2011
, “
A Novel Controller for Gas Turbine Engines With Aggressive Limit Management
,”
AIAA
Paper No. 2011-5857.10.2514/6.2011-5857
6.
May
,
R. D.
, and
Garg
,
S.
,
2012
, “
Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators
,”
ASME
Paper No. GT2012-70017.10.1115/GT2012-70017
7.
Imani
,
A.
, and
Montazeri-Gh
,
M.
,
2017
, “
Improvement of Min-Max Limit Protection in Aircraft Engine Control: An Lmi Approach
,”
Aerosp. Sci. Technol.
,
68
, pp.
214
222
.10.1016/j.ast.2017.05.017
8.
Kolmanovsky
,
I. V.
,
Jaw
,
L. C.
,
Merrill
,
W.
, and
Van
,
H. T.
,
2012
, “
Robust Control and Limit Protection in Aircraft Gas Turbine Engines
,”
IEEE
International Conference on Control Applications, Dubrovnik, Croatia, Oct. 3–5, pp.
812
819
.10.1109/CCA.2012.6402640
9.
Richter
,
H.
,
2011
, “
A Multi-Regulator Sliding Mode Control Strategy for Output-Constrained Systems
,”
Automatica
,
47
(
10
), pp.
2251
2259
.10.1016/j.automatica.2011.08.003
10.
Richter
,
H.
,
2012
, “
Multiple Sliding Modes With Override Logic: Limit Management in Aircraft Engine Controls
,”
J. Guid., Control, Dyn.
,
35
(
4
), pp.
1132
1142
.10.2514/1.55922
11.
Yu
,
B.
,
Ke
,
H.
,
Shu
,
W.
, and
Zhang
,
T.
,
2019
, “
A Novel Control Scheme for Aircraft Engine Based on Sliding Mode Control With Acceleration/Deceleration Limiter
,”
IEEE Access
,
7
, pp.
3572
3580
.10.1109/ACCESS.2018.2885019
12.
Du
,
X.
,
Richter
,
H.
, and
Guo
,
Y.
,
2016
, “
Multivariable Sliding-Mode Strategy With Output Constraints for Aeroengine Propulsion Control
,”
J. Guid., Control, Dyn.
,
39
(
7
), pp.
1631
1642
.10.2514/1.G001802
13.
Yang
,
S.
,
Wang
,
X.
, and
Yang
,
B.
,
2018
, “
Adaptive Sliding Mode Control for Limit Protection of Aircraft Engines
,”
Chin. J. Aeronaut.
,
31
(
7
), pp.
1480
1488
.10.1016/j.cja.2018.05.011
14.
Yang
,
S.
, and
Wang
,
X.
,
2017
, “
Sliding Controller Design for Aero-Engines With the Rate Limitation of Actuators
,”
ASME
Paper No. GT2017-63571.10.1115/GT2017-63571
15.
Rugh
,
W. J.
, and
Shamma
,
J. S.
,
2000
, “
Research on Gain Scheduling
,”
Automatica
,
36
(
10
), pp.
1401
1425
.10.1016/S0005-1098(00)00058-3
16.
Leith
,
D. J.
, and
Leithead
,
W. E.
,
2000
, “
Survey of Gain-Scheduling Analysis and Design
,”
Int. J. Control
,
73
(
11
), pp.
1001
1025
.10.1080/002071700411304
17.
Shamma
,
J. S.
, and
Athans
,
M.
,
1991
, “
Gain Scheduling: Potential Hazards and Possible Remedies
,”
American Control Conference
, Boston, MA, June 26–28, pp.
516
521
.10.23919/ACC.1991.4791421
18.
Shamma
,
J. S.
, and
Cloutier
,
J. R.
,
1993
, “
Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations
,”
J. Guid., Control, Dyn.
,
16
(
2
), pp.
256
263
.10.2514/3.20997
19.
Kajiwara
,
H.
,
Apkarian
,
P.
, and
Gahinet
,
P.
,
1999
, “
LPV Techniques for Control of an Inverted Pendulum
,”
IEEE Control Syst.
,
19
(
1
), pp.
44
54
.10.1109/37.745767
20.
Lu
,
B.
,
Choi
,
H.
, and
Buckner
,
G. D.
,
2006
, “
LPV Control Design and Experimental Implementation for a Magnetic Bearing System
,”
American Control Conference
, Minneapolis, MN, June 14–16, pp.
4570
4575
.10.1109/ACC.2006.1657440
21.
Chandra
,
K. P. B.
,
Alwi
,
H.
, and
Edwards
,
C.
,
2017
, “
Fault Detection in Uncertain LPV Systems With Imperfect Scheduling Parameter Using Sliding Mode Observers
,”
Eur. J. Control
,
34
, pp.
1
15
.10.1016/j.ejcon.2016.12.001
22.
Hamdi
,
H.
,
Rodrigues
,
M.
,
Mechmeche
,
C.
, and
Braiek
,
N. B.
,
2019
, “
Fault Diagnosis Based on Sliding Mode Observer for LPV Descriptor Systems
,”
Asian J. Control
,
21
(
1
), pp.
89
98
.10.1002/asjc.2022
23.
Chen
,
L.
,
Edwards
,
C.
, and
Alwi
,
H.
,
2018
, “
Sensor Redundancy Based FDI Using an LPV Sliding Mode Observer
,”
IET Control Theory Appl.
,
12
(
14
), pp.
1956
1963
.10.1049/iet-cta.2017.0818
24.
Shamma
,
J. S.
,
1988
, “
Analysis and Design of Gain Scheduled Control Systems
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
25.
Wang
,
Y.
,
Xie
,
L.
, and
de Souza
,
C. E.
,
1992
, “
Robust Control of a Class of Uncertain Nonlinear Systems
,”
Syst. Control Lett.
,
19
(
2
), pp.
139
149
.10.1016/0167-6911(92)90097-C
26.
Yang
,
S.
,
2019
, “
GTML-E: Gas Turbine Modeling Library for Education (Version v1.2)
,” Zenodo, Geneva, Switzerland, Mar. 10,
epub
.10.5281/zenodo.2588802
27.
Visser
,
W. P.
, and
Broomhead
,
M. J.
,
2000
, “
GSP, a Generic Object-Oriented Gas Turbine Simulation Environment
,”
ASME
Paper No. 2000-GT-0002.10.1115/2000-GT-0002
28.
Yang
,
S.
, and
Wang
,
X.
,
2016
, “
A Comparative Study on n-Dot Acceleration Technique
,”
ASME
Paper No. GT2016-57341.10.1115/GT2016-57341
29.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in Matlab
,”
IEEE Internatinal Conference on Robotics and Automation
, New Orleans, LA, Sept. 2–4, pp. 284–289.10.1109/CACSD.2004.1393890
30.
Chapman
,
J. W.
,
May
,
R. D.
,
Lavelle
,
T. M.
,
Litt
,
J. S.
, and
Guo
,
T. H.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic Systems (t-Mats) User's Guide
,” NASA Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2014-216638.
You do not currently have access to this content.