Abstract

Estimating central aortic blood pressure (BP) is important for cardiovascular (CV) health and risk prediction purposes. CV system is a multichannel dynamical system that yields multiple BPs at various body sites in response to central aortic BP. This paper concerns the development and analysis of an observer-based approach to deconvolution of unknown input in a class of coprime multichannel systems applicable to noninvasive estimation of central aortic BP. A multichannel system yields multiple outputs in response to a common input. Hence, the relationship between any pair of two outputs constitutes a hypothetical input–output system with unknown input embedded as a state. The central idea underlying our approach is to derive the unknown input by designing an observer for the hypothetical input–output system. In this paper, we developed an unknown input observer (UIO) for input deconvolution in coprime multichannel systems. We provided a universal design algorithm as well as meaningful physical insights and inherent performance limitations associated with the algorithm. The validity and potential of our approach were illustrated using a case study of estimating central aortic BP waveform from two noninvasively acquired peripheral arterial pulse waveforms. The UIO could reduce the root-mean-squared error (RMSE) associated with the central aortic BP by up to 27.5% and 28.8% against conventional inverse filtering (IF) and peripheral arterial pulse scaling techniques.

References

References
1.
Benjamin
,
E. J.
,
Virani
,
S. S.
,
Callaway
,
C. W.
,
Chamberlain
,
A. M.
,
Chang
,
A. R.
,
Cheng
,
S.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Delling
,
F. N.
,
Deo
,
R.
,
De Ferranti
,
S. D.
,
Ferguson
,
J. F.
,
Fornage
,
M.
,
Gillespie
,
C.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Jordan
,
L. C.
,
Judd
,
S. E.
,
Lackland
,
D.
,
Lichtman
,
J. H.
,
Lisabeth
,
L.
,
Liu
,
S.
,
Longenecker
,
C. T.
,
Lutsey
,
P. L.
,
MacKey
,
J. S.
,
Matchar
,
D. B.
,
Matsushita
,
K.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
O'Flaherty
,
M.
,
Palaniappan
,
L. P.
,
Pandey
,
A.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Ritchey
,
M. D.
,
Rodriguez
,
C. J.
,
Roth
,
G. A.
,
Rosamond
,
W. D.
,
Sampson
,
U. K. A.
,
Satou
,
G. M.
,
Shah
,
S. H.
,
Spartano
,
N. L.
,
Tirschwell
,
D. L.
,
Tsao
,
C. W.
,
Voeks
,
J. H.
,
Willey
,
J. Z.
,
Wilkins
,
J. T.
,
Wu
,
J. H. Y.
,
Alger
,
H. M.
,
Wong
,
S. S.
, and
Muntner
,
P.
,
2018
, “
Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association
,”
Circulation
, 137(12), pp.
e67
e492
.10.1161/CIR.0000000000000558
2.
Mceniery
,
C. M.
,
Cockcroft
,
J. R.
,
Roman
,
M. J.
,
Franklin
,
S. S.
, and
Wilkinson
,
I. B.
,
2014
, “
Central Blood Pressure: Current Evidence and Clinical Importance
,”
Eur. Heart J.
,
35
(
26
), pp.
1719
1725
.10.1093/eurheartj/eht565
3.
Ferguson
,
J. M.
,
Minas
,
J.
,
Siapantas
,
S.
,
Komesaroff
,
P. A.
, and
Sudhir
,
K.
,
2008
, “
Effects of a Fixed-Dose ACE Inhibitor-Diuretic Combination on Ambulatory Blood Pressure and Arterial Properties in Isolated Systolic Hypertension
,”
J. Cardiovasc. Pharmacol.
,
51
(
6
), pp.
590
595
.10.1097/FJC.0b013e31817a8316
4.
Roman
,
M. J.
,
Okin
,
P. M.
,
Kizer
,
J. R.
,
Lee
,
E. T.
,
Howard
,
B. V.
, and
Devereux
,
R. B.
,
2010
, “
Relations of Central and Brachial Blood Pressure to Left Ventricular Hypertrophy and Geometry: The Strong Heart Study
,”
J. Hypertens.
,
28
(
2
), pp.
384
388
.10.1097/HJH.0b013e328333d228
5.
Roman
,
M. J.
,
Devereux
,
R. B.
,
Kizer
,
J. R.
,
Lee
,
E. T.
,
Galloway
,
J. M.
,
Ali
,
T.
,
Umans
,
J. G.
, and
Howard
,
B. V.
,
2007
, “
Central Pressure More Strongly Relates to Vascular Disease and Outcome Than Does Brachial Pressure: The Strong Heart Study
,”
Hypertension
,
50
(
1
), pp.
197
203
.10.1161/HYPERTENSIONAHA.107.089078
6.
Sharman
,
J. E.
,
Lim
,
R.
,
Qasem
,
A. M.
,
Coombes
,
J. S.
,
Burgess
,
M. I.
,
Franco
,
J.
,
Garrahy
,
P.
,
Wilkinson
,
I. B.
, and
Marwick
,
T. H.
,
2006
, “
Validation of a Generalized Transfer Function to Noninvasively Derive Central Blood Pressure During Exercise
,”
Hypertension
,
47
(
6
), pp.
1203
1208
.10.1161/01.HYP.0000223013.60612.72
7.
Swamy, G., Xu, D., Olivier, N. B., and Mukkamala, R.
,
2009
, “
An Adaptive Transfer Function for Deriving the Aortic Pressure Waveform from a Peripheral Artery Pressure Waveform
,”
Am. J. Physiol. Heart Circ. Physiol.
,
297
(
5
), pp.
H1956
–H
1963
.10.1152/ajpheart.00155.2009
8.
Ding
,
F.-H.
,
Fan
,
W.-X.
,
Zhang
,
R.-Y.
,
Zhang
,
Q.
,
Li
,
Y.
, and
Wang
,
J.-G.
,
2011
, “
Validation of the Noninvasive Assessment of Central Blood Pressure by the SphygmoCor and Omron Devices Against the Invasive Catheter Measurement
,”
Am. J. Hypertens.
,
24
(
12
), pp.
1306
1311
.10.1038/ajh.2011.145
9.
Gallagher
,
D.
,
Adji
,
A.
, and
Orourke
,
M.
,
2004
, “
Validation of the Transfer Function Technique for Generating Central From Peripheral Upper Limb Pressure Waveform
,”
Am. J. Hypertens.
,
17
(
11
), pp.
1059
1067
.10.1016/j.amjhyper.2004.05.027
10.
Chen
,
C. H.
,
Ting
,
C. T.
,
Nussbacher
,
A.
,
Nevo
,
E.
,
Kass
,
D. A.
,
Pak
,
P.
,
Wang
,
S. P.
,
Chang
,
M. S.
, and
Yin
,
F. C.
,
1996
, “
Validation of Carotid Artery Tonometry as a Means of Estimating Augmentation Index of Ascending Aortic Pressure
,”
Hypertension
,
27
(
2
), pp.
168
175
.10.1161/01.HYP.27.2.168
11.
Chen
,
C. H.
,
Nevo
,
E.
,
Fetics
,
B.
,
Pak
,
P. H.
,
Yin
,
F. C.
,
Maughan
,
W. L.
, and
Kass
,
D. A.
,
1997
, “
Estimation of Central Aortic Pressure Waveform by Mathematical Transformation of Radial Tonometry Pressure
,”
Circulation
,
95
(
7
), pp.
1827
1836
.10.1161/01.CIR.95.7.1827
12.
Shih
,
Y.-T.
,
Cheng
,
H.-M.
,
Sung
,
S.-H.
,
Hu
,
W.-C.
, and
Chen
,
C.-H.
,
2013
, “
Comparison of Two Generalized Transfer Functions for Measuring Central Systolic Blood Pressure by an Oscillometric Blood Pressure Monitor
,”
J. Hum. Hypertens.
,
27
(
3
), pp.
204
210
.10.1038/jhh.2012.17
13.
Cheng
,
H.
,
Sung
,
S.
,
Shih
,
Y.
,
Chuang
,
S.
,
Yu
,
W.
, and
Chen
,
C.
,
2012
, “
Measurement of Central Aortic Pulse Pressure: Noninvasive Brachial Cuff-Based Estimation by a Transfer Function Vs. a Novel Pulse Wave Analysis Method
,”
Am. J. Hypertens.
,
25
(
11
), pp.
1162
1169
.10.1038/ajh.2012.116
14.
Hope
,
S. A.
,
Meredith
,
I. T.
,
Tay
,
D.
, and
Cameron
,
J. D.
,
2007
, “
Generalizability' of a Radial-Aortic Transfer Function for the Derivation of Central Aortic Waveform Parameters
,”
J. Hypertens.
,
25
(
9
), pp.
1812
1820
.10.1097/HJH.0b013e328277595d
15.
Cameron
,
J. D.
,
McGrath
,
B. P.
, and
Dart
,
A. M.
,
1998
, “
Use of Radial Artery Applanation Tonometry and a Generalized Transfer Function to Determine Aortic Pressure Augmentation in Subjects With Treated Hypertension
,”
J. Am. Coll. Cardiol.
,
32
(
5
), pp.
1214
1220
.10.1016/S0735-1097(98)00411-2
16.
Fetics, B., Nevo, E., Chen, C.-H. , and
Kass
,
D. A.
,
1999
, “
Parametric Model Derivation of Transfer Function for Noninvasive Estimation of Aortic Pressure by Radial Tonometry
,”
IEEE Trans. Biomed. Eng.
,
46
(
6
), pp.
698
706
.10.1109/10.764946
17.
Rashedi
,
M.
,
Fazeli
,
N.
,
Chappell
,
A.
,
Wang
,
S.
,
MacArthur
,
R.
,
McMurtry
,
M. S.
,
Finegan
,
B. A.
, and
Hahn
,
J. O.
,
2013
, “
Comparative Study on Tube-Load Modeling of Arterial Hemodynamics in Humans
,”
ASME J. Biomech. Eng.
,
135
, p.
31005
.10.1115/1.4023373
18.
Hope
,
S. A.
,
Tay
,
D. B.
,
Meredith
,
I. T.
, and
Cameron
,
J. D.
,
2003
, “
Use of Arterial Transfer Functions for the Derivation of Aortic Waveform Characteristics
,”
J. Hypertens.
,
21
(
7
), pp.
1299
1305
.10.1097/00004872-200307000-00017
19.
Abed-Meraim
,
K.
,
Qiu
,
W.
, and
Hua
,
Y.
,
1997
, “
Blind System Identification
,”
Proc. IEEE
,
85
(
8
), pp.
1310
1322
.10.1109/5.622507
20.
Ghasemi
,
Z.
,
Kim
,
C.
,
Ginsberg
,
E.
,
Gupta
,
A.
, and
Hahn
,
J.-O.
,
2017
, “
Model-Based Blind System Identification Approach to Estimation of Central Aortic Blood Pressure Waveform From Noninvasive Diametric Circulatory Signals
,”
ASME J. Dyn. Syst. Meas. Control
,
139
, p.
061003
.10.1115/1.4035451
21.
Swamy
,
G.
,
Ling
,
Q.
,
Li
,
T.
, and
Mukkamala
,
R.
,
2007
, “
Blind Identification of the Aortic Pressure Waveform From Multiple Peripheral Artery Pressure Waveforms
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
5
), pp.
H2257
H2264
.10.1152/ajpheart.01159.2006
22.
Abutaleb
,
A. S.
,
Waheed
,
M. E.-S.
, and
Elhamy
,
N. M.
,
2010
, “
Multichannel Blind Deconvolution Using the Stochastic Calculus for the Estimation of the Central Arterial Pressure
,”
Math. Probl. Eng.
,
2010
, pp.
1
21
.10.1155/2010/602373
23.
Hahn
,
J.-O.
,
Reisner
,
A. T.
, and
Asada
,
H. H.
,
2009
, “
Blind Identification of Two-Channel IIR Systems With Application to Central Cardiovascular Monitoring
,”
ASME J. Dyn. Syst. Meas. Control
,
131
, p.
051009
.10.1115/1.3155011
24.
Hahn
,
J. O.
,
McCombie
,
D. B.
,
Reisner
,
A. T.
,
Hojman
,
H. M.
, and
Harry
,
A.
,
2010
, “
Identification of Multichannel Cardiovascular Dynamics Using Dual Laguerre Basis Functions for Noninvasive Cardiovascular Monitoring
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
170
176
.10.1109/TCST.2008.2009996
25.
Zhang
,
G.
,
Hahn
,
J. O.
, and
Mukkamala
,
R.
,
2011
, “
Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics
,”
Front. Physiol.
,
2
, pp.
1
18
.
26.
Hua
,
Y.
,
2002
, “
Blind Methods of System Identification
,”
Circuits, Syst. Signal Process.
,
21
(
1
), pp.
91
108
.10.1007/BF01211654
27.
Alberge
,
F.
,
Duhamel
,
P.
, and
Nikolova
,
M.
,
2002
, “
Adaptive Solution for Blind Identification/Equalization Using Deterministic Maximum Likelihood
,”
IEEE Trans. Signal Process.
,
50
(
4
), pp.
923
936
.10.1109/78.992140
28.
Gürelli
,
M. L.
, and
Nikias
,
C. L.
,
1995
, “
EVAM: An Eigenvector-Based Deconvolution of Input Colored Signals
,”
IEEE Trans. Signal Process.
,
43
(
1
), pp.
134
149
.10.1109/78.365293
29.
Chen
,
C. T.
,
1998
,
Linear System Theory and Design
,
Oxford University Press
,
New York
.
30.
Buntin
,
C. M.
, and
Silver
,
F. H.
,
1990
, “
Noninvasive Assessment of Mechanical Properties of Peripheral Arteries
,”
Ann. Biomed. Eng.
,
18
(
5
), pp.
549
566
.10.1007/BF02364617
31.
Ghasemi
,
Z.
,
Lee
,
J. C.
,
Kim
,
C. S.
,
Cheng
,
H. M.
,
Sung
,
S. H.
,
Chen
,
C. H.
,
Mukkamala
,
R.
, and
Hahn
,
J. O.
,
2018
, “
Estimation of Cardiovascular Risk Predictors From Non-Invasively Measured Diametric Pulse Volume Waveforms Via Multiple Measurement Information Fusion
,”
Sci. Rep.
,
8
(
1
), p.
10433
.10.1038/s41598-018-28604-6
32.
Fazeli
,
N.
,
Kim
,
C. S.
,
Rashedi
,
M.
,
Chappell
,
A.
,
Wang
,
S.
,
MacArthur
,
R.
,
McMurtry
,
M. S.
,
Finegan
,
B.
, and
Hahn
,
J. O.
,
2014
, “
Subject-Specific Estimation of Central Aortic Blood Pressure Via System Identification: Preliminary In-Human Experimental Study
,”
Med. Biol. Eng. Comput.
,
52
(
10
), pp.
895
904
.10.1007/s11517-014-1185-3
33.
Abdollahzade
,
M.
,
Kim
,
C.-S.
,
Fazeli
,
N.
,
Finegan
,
B. A.
,
Sean McMurtry
,
M.
, and
Hahn
,
J.-O.
,
2014
, “
Data-Driven Lossy Tube-Load Modeling of Arterial Tree: In-Human Study
,”
ASME J. Biomech. Eng.
,
136
(
10
), p.
101011
.10.1115/1.4028089
34.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
1994
,
Feedback Control of Dynamic Systems
,
Pearson Higher Education
,
Upper Saddle River, NJ
.
35.
Chilali
,
M.
, and
Gahinet
,
P.
,
1996
, “
H∞ Design With Pole Placement Constraints: An LMI Approach
,”
IEEE Trans. Automat. Control
,
41
(
3
), pp.
358
367
.10.1109/9.486637
You do not currently have access to this content.