Abstract

In this work, the problem of trajectory tracking in uncertain underactuated systems is considered. To solve it, a combination of differential flatness and active disturbance rejection control (ADRC) is proposed. The controller design is synthesized in the absence of detailed knowledge of the system model and focuses on dealing with over-amplification of measurement noise, typically seen in conventional single high-gain observer-centered control approaches. The introduced solution is based on fully utilizing the information already available about the governed system, without the necessity for additional measurement devices. To be easily implementable, it is expressed in an industry familiar error-based form with a straightforward tuning method. Through experimental verification, the proposed approach is shown to enhance the disturbance-rejection capabilities of the standard ADRC structure and reduce its sensitivity to measurement noise, thus increasing its practical appeal.

References

1.
Madonski
,
R.
,
Ramírez-Neria
,
M.
,
Stankovic
,
M.
,
Shao
,
S.
,
Gao
,
Z.
,
Yang
,
J.
, and
Li
,
S.
,
2019
, “
On Vibration Suppression and Trajectory Tracking in Largely Uncertain Torsional System: An Error-Based ADRC Approach
,”
Mech. Syst. Signal Process.
,
134
, p.
106300
.10.1016/j.ymssp.2019.106300
2.
Li
,
H.
,
Le
,
M.
,
Gong
,
Z.
, and
Lin
,
W.
,
2009
, “
Motion Profile Design to Reduce Residual Vibration of High-Speed Positioning Stages
,”
IEEE/ASME Trans. Mechatronics
,
14
(
2
), pp.
264
269
.10.1109/TMECH.2008.2012160
3.
Pan
,
H.
, and
Sun
,
W.
,
2019
, “
Nonlinear Output Feedback Finite-Time Control for Vehicle Active Suspension Systems
,”
IEEE Trans. Ind. Inform
,
15
(
4
), pp.
2073
2082
.10.1109/TII.2018.2866518
4.
Pan
,
H.
,
Jing
,
X.
,
Sun
,
W.
, and
Gao
,
H.
,
2018
, “
A Bioinspired Dynamics-Based Adaptive Tracking Control for Nonlinear Suspension Systems
,”
IEEE Trans. Control Syst. Technol.
,
26
(
3
), pp.
903
914
.10.1109/TCST.2017.2699158
5.
Lim
,
H.
,
Seo
,
J.-W.
, and
Choi
,
C.-H.
,
2001
, “
Torsional Displacement Compensation in Position Control for Machining Centers
,”
Control Eng. Pract.
,
9
(
1
), pp.
79
87
.10.1016/S0967-0661(00)00076-9
6.
Wie
,
B.
, and
Bernstein
,
D. S.
,
1991
, “
Benchmark Problems for Robust Control Design
,”
American Control Conference
,
Chicago, IL
, June 24–26, pp.
1929
1930
.10.23919/ACC.1990.4790876
7.
Douglas
,
J.
, and
Athans
,
M.
,
1991
, “
Robust LQR Control for the Benchmark Problem
,”
American Control Conference
,
Boston, MA
, June 26–28, pp.
1923
1924
.10.23919/ACC.1991.4791724
8.
Zhang
,
H.
,
Zhao
,
S.
, and
Gao
,
Z.
,
2016
, “
An Active Disturbance Rejection Control Solution for the Two-Mass-Spring Benchmark Problem
,”
American Control Conference
,
Boston, MA
, July 6–8, pp.
1566
1571
.10.1109/ACC.2016.7525139
9.
Reyhanoglu
,
M.
,
van der Schaft
,
A.
,
Mcclamroch
,
N. H.
, and
Kolmanovsky
,
I.
,
1999
, “
Dynamics and Control of a Class of Underactuated Mechanical Systems
,”
IEEE Trans. Autom. Control
,
44
(
9
), pp.
1663
1671
.10.1109/9.788533
10.
Yang
,
X.
, and
Zheng
,
X.
,
2018
, “
Swing-Up and Stabilization Control Design for an Underactuated Rotary Inverted Pendulum System: Theory and Experiments
,”
IEEE Trans. Ind. Electron.
,
65
(
9
), pp.
7229
7238
.10.1109/TIE.2018.2793214
11.
Jeong
,
S.
, and
Chwa
,
D.
,
2018
, “
Coupled Multiple Sliding-Mode Control for Robust Trajectory Tracking of Hovercraft With External Disturbances
,”
IEEE Trans. Ind. Electron.
,
65
(
5
), pp.
4103
4113
.10.1109/TIE.2017.2774772
12.
Serrano
,
M. E.
,
Scaglia
,
G. J. E.
,
Godoy
,
S. A.
,
Mut
,
V.
, and
Ortiz
,
O. A.
,
2014
, “
Trajectory Tracking of Underactuated Surface Vessels: A Linear Algebra Approach
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp.
1103
1111
.10.1109/TCST.2013.2271505
13.
Gao
,
Z.
,
2014
, “
On the Centrality of Disturbance Rejection in Automatic Control
,”
ISA Trans.
,
53
(
4
), pp.
850
857
.10.1016/j.isatra.2013.09.012
14.
Yao
,
J.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2014
, “
Extended-State-Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping
,”
IEEE Trans. Ind. Electron.
,
61
(
11
), pp.
6285
6293
.10.1109/TIE.2014.2304912
15.
Deng
,
W.
,
Yao
,
J.
, and
Ma
,
D.
,
2018
, “
Time-Varying Input Delay Compensation for Nonlinear Systems With Additive Disturbance: An Output Feedback Approach
,”
Int. J. Robust Nonlinear Control
,
28
(
1
), pp.
31
52
.10.1002/rnc.3853
16.
Sira-Ramírez
,
H.
, and
Agrawal
,
S. K.
,
2004
,
Differentially Flat Systems
,
CRC Press
,
New York
.
17.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
18.
Ramírez-Neria
,
M.
,
Sira-Ramírez
,
H.
,
Garrido-Moctezuma
,
R.
, and
Luviano-Juárez
,
A.
,
2014
, “
Linear Active Disturbance Rejection Control of Underactuated Systems: The Case of the Furuta Pendulum
,”
ISA Trans.
,
53
(
4
), pp.
920
928
.10.1016/j.isatra.2013.09.023
19.
Ramírez-Neria
,
M.
,
Sira-Ramírez
,
H.
,
Garrido-Moctezuma
,
R.
, and
Luviano-Juárez
,
A.
,
2016
, “
On the Linear Control of Underactuated Nonlinear Systems Via Tangent Flatness and Active Disturbance Rejection Control: The Case of the Ball and Beam System
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
10
), p.
104501
.10.1115/1.4033313
20.
Sira-Ramírez
,
H.
,
Luviano-Juárez
,
A.
,
Ramírez-Neria
,
M.
, and
Zurita-Bustamante
,
E. W.
,
2018
,
Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach
,
Butterworth-Heinemann
, Oxford, UK.
21.
Ramírez-Neria
,
M.
,
Gao
,
Z.
,
Sira-Ramírez
,
H.
,
Garrido-Moctezuma
,
R.
, and
Luviano-Juarez
,
A.
,
2020
, “
On the Tracking of Fast Trajectories of a 3DOF Torsional Plant: A Flatness Based ADRC Approach
,”
Asian J. Control
(in press).
22.
Madonski
,
R.
, and
Herman
,
P.
,
2015
, “
Survey on Methods of Increasing the Efficiency of Extended State Disturbance Observers
,”
ISA Trans.
,
56
, pp.
18
27
.10.1016/j.isatra.2014.11.008
23.
Godbole
,
A. A.
,
Kolhe
,
J. P.
, and
Talole
,
S. E.
,
2013
, “
Performance Analysis of Generalized Extended State Observer in Tackling Sinusoidal Disturbances
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2212
2223
.10.1109/TCST.2012.2231512
24.
Madonski
,
R.
, and
Herman
,
P.
,
2013
, “
On the Usefulness of Higher-Order Disturbance Observers in Real Control Scenarios Based on Perturbation Estimation and Mitigation
,”
RoMoCo
, Kuslin, Poland, July 3–5, pp.
252
257
.10.1109/RoMoCo.2013.6614617
25.
Zhao
,
S.
, and
Gao
,
Z.
,
2013
, “
An Active Disturbance Rejection Based Approach to Vibration Suppression in Two-Inertia Systems
,”
Asian J. Control
,
15
(
2
), pp.
350
362
.10.1002/asjc.552
26.
Yang
,
J.
,
Cui
,
H.
,
Li
,
S.
, and
Zolotas
,
A.
,
2017
, “
Optimized Active Disturbance Rejection Control for DC-DC Buck Converters With Uncertainties Using a Reduced-Order GPI Observer
,”
IEEE Trans. Circuits Syst.
, 65(2), pp.
832
841
.10.1109/TCSI.2017.2725386
27.
Wenyan
,
B.
,
Xue
,
W.
,
Yi
,
H.
, and
Haitao
,
F.
,
2015
, “
Extended State Filter Design for General Nonlinear Uncertain Systems
,”
Annual Conference of the Society of Instrument and Control Engineers of Japan
(
SICE
), Hangzhou, China, July 28–30, pp.
712
717
.10.1109/SICE.2015.7285553
28.
Madonski
,
R.
, and
Herman
,
P.
,
2012
, “
Method of Sensor Noise Attenuation in High-Gain Observers: Experimental Verification on Two Laboratory Systems
,”
IEEE International Symposium on Robotic and Sensors Environments Proceedings
(
ROSE
), Magdeburg, Germany, Nov. 16–18, pp.
121
126
.10.1109/ROSE.2012.6402616
29.
Michalek
,
M. M.
,
2016
, “
Robust Trajectory Following Without Availability of the Reference Time-Derivatives in the Control Scheme With Active Disturbance Rejection
,”
American Control Conference
, Boston, MA, July 6–8, pp.
1536
1541
.10.1109/ACC.2016.7525134
30.
Educational Control Products
, 2018, “
Rectilinear Plant Control System, Manual for Model 201
,” Educational Control Products,
Bell Canyon, CA
.
31.
Sun
,
L.
,
Jin
,
Y.
, and
You
,
F.
,
2020
, “
Active Disturbance Rejection Temperature Control of Open-Cathode Proton Exchange Membrane Fuel Cell
,”
Appl. Energy
,
261
, p.
114381
.10.1016/j.apenergy.2019.114381
32.
Ahi
,
B.
, and
Haeri
,
M.
,
2018
, “
Linear Active Disturbance Rejection Control From the Practical Aspects
,”
IEEE/ASME Trans. Mechatronics
, 23(6), pp. 2909–2919 (epub).10.1109/TMECH.2018.2871880
33.
Shi
,
D.
,
Xue
,
J.
,
Zhao
,
L.
,
Wang
,
J.
, and
Huang
,
Y.
,
2017
, “
Event-Triggered Active Disturbance Rejection Control of DC Torque Motors
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2277
2287
.10.1109/TMECH.2017.2748887
34.
Gao
,
Z.
,
2003
, “
Scaling and Bandwidth-Parameterization Based Controller Tuning
,”
American Control Conference
,
Denver, CO
, June 4–6, pp.
4989
4996
.10.1109/ACC.2003.1242516
35.
Chen
,
S.
,
Bai
,
W.
,
Hu
,
Y.
,
Huang
,
Y.
, and
Gao
,
Z.
,
2020
, “
On the Conceptualization of Total Disturbance and Its Profound Implications
,”
Sci. China Inf. Sci.
,
63
(
2
), pp.
1
3
.10.1007/s11432-018-9644-3
You do not currently have access to this content.