Abstract

In this paper, we propose a novel collocation method based on hybrid functions to identify the parameters and differential orders of fractional order systems (FOS). The hybrid functions consist of block-pulse functions and Taylor polynomials. The analytical form of Riemann–Liouville fractional order integral operator of these hybrid functions is derived using the Laplace transform. Then the integral operator is utilized, in conjunction with collocation points, to convert the FOS into an algebraic system directly. The parameters and differential orders of the FOS are estimated by minimizing the error between the output of the actual system and that of the estimated system. The effectiveness of the proposed method is verified through four examples.

References

References
1.
Wang
,
J. C.
,
1987
, “
Realizations of Generalized Warburg Impedance With RC Ladder Networks and Transmission Lines
,”
J. Electrochem. Soc.
,
134
(
8
), pp.
1915
1920
.10.1149/1.2100789
2.
Igor
,
P.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
3.
Bagley
,
R. L.
, and
Calico
,
R. A.
,
1991
, “
Fractional Order State Equations for the Control of Visco-Elastically Damped Structures
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
304
311
.10.2514/3.20641
4.
Ichise
,
M.
,
Nagayanagi
,
Y.
, and
Kojima
,
T.
,
1971
, “
An Analog Simulation of Non-Integer Order Transfer Functions for Analysis of Electrode Processes
,”
J. Electroanal. Chem.
,
33
(
2
), pp.
253
265
.10.1016/S0022-0728(71)80115-8
5.
Tejado
,
I.
,
Valério
,
D.
,
Pires
,
P.
, and
Martins
,
J.
,
2013
, “
Fractional Order Identification of Human Arm Dynamics: Preliminary Results
,”
European Control Conference
, Zurich, Switzerland, July 17–19, pp.
3452
3457
.10.23919/ECC.2013.6669337
6.
Tejado
,
I.
,
Valério
,
D.
,
Pires
,
P.
, and
Martins
,
J.
,
2013
, “
Fractional Order Human Arm Dynamics With Variability Analyses
,”
Mechatronics
,
23
(
7
), pp.
805
812
.10.1016/j.mechatronics.2013.05.003
7.
Chen
,
L.
,
Basu
,
B.
, and
McCabe
,
D.
,
2016
, “
Fractional Order Models for System Identification of Thermal Dynamics of Buildings
,”
Energy Build.
,
133
, pp.
381
388
.10.1016/j.enbuild.2016.09.006
8.
Gabano
,
J.-D.
,
Poinot
,
T.
, and
Kanoun
,
H.
,
2015
, “
LPV Continuous Fractional Modeling Applied to Ultracapacitor Impedance Identification
,”
Control Eng. Pract.
,
45
, pp.
86
97
.10.1016/j.conengprac.2015.09.001
9.
Zhong
,
J.
, and
Li
,
L.
,
2013
, “
Identification of a Solid-Core Magnetic Bearing Using Incommensurate Fractional-Order Models
,” Proceedings of the 2013
International Conference on Advanced Mechatronic Systems
, Luoyang, China, Sept. 25–27, pp. 262–267.10.1109/ICAMechS.2013.6681791
10.
Valério
,
D.
,
Ortigueira
,
M. D.
, and
Sá da Costa
,
J.
,
2008
, “
Identifying a Transfer Function From a Frequency Response
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021207
.10.1115/1.2833906
11.
Valério
,
D.
, and
Costa
,
J. S. D.
,
2010
, “
Finding a Fractional Model From Frequency and Time Responses
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
4
), pp.
911
921
.10.1016/j.cnsns.2009.05.014
12.
Malti
,
R.
,
Victor
,
S.
, and
Oustaloup
,
A.
,
2008
, “
Advances in System Identification Using Fractional Model
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021401
.10.1115/1.2833910
13.
Malti
,
R.
,
Victor
,
S.
,
Oustaloup
,
A.
, and
Garnier
,
H.
,
2008
, “
An Optimal Instrumental Variable Method for Continuous-Time Fractional Model Identification
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
14379
14384
.10.3182/20080706-5-KR-1001.02436
14.
Hu
,
Y.
,
Fan
,
Y.
,
Wei
,
Y.
,
Wang
,
Y.
, and
Liang
,
Q.
,
2016
, “
Subspace-Based Continuous-Time Identification of Fractional Order Systems From Non-Uniformly Sampled Data
,”
Int. J. Syst. Sci.
,
47
(
1
), pp.
122
134
.10.1080/00207721.2015.1029568
15.
Amairi
,
M.
,
2015
, “
Recursive Set-Membership Parameter Estimation Using Fractional Model
,”
Circuits Syst. Signal Process.
,
34
(
12
), pp.
3757
3788
.10.1007/s00034-015-0036-2
16.
Malti
,
R.
,
Raïssi
,
T. R.
,
Thomassin
,
M.
, and
Khemane
,
F.
,
2010
, “
Set Membership Parameter Estimation of Fractional Models Based on Bounded Frequency Domain Data
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
4
), pp.
927
938
.10.1016/j.cnsns.2009.05.005
17.
Dai
,
Y.
,
Wei
,
Y.
,
Hu
,
Y.
, and
Wang
,
Y.
,
2016
, “
Modulating Function-Based Identification for Fractional Order Systems
,”
Neurocomputing
,
173
(Pt. 3), pp.
1959
1966
.10.1016/j.neucom.2015.07.002
18.
Gao
,
Z.
,
Lin
,
X.
, and
Zheng
,
Y.
,
2018
, “
System Identification With Measurement Noise Compensation Based on Polynomial Modulating Function for Fractional-Order Systems With a Known Time-Delay
,”
ISA Trans.
,
79
, pp.
62
72
.10.1016/j.isatra.2018.04.012
19.
Gao
,
Z.
,
2017
, “
Modulating Function-Based System Identification for a Fractional-Order System With a Time Delay Involving Measurement Noise Using Least-Squares Method
,”
Int. J. Syst. Sci.
,
48
(
7
), pp.
1460
1471
.10.1080/00207721.2016.1265159
20.
Cui
,
R.
,
Wei
,
Y.
,
Cheng
,
S.
, and
Wang
,
Y.
, “
An Innovative Parameter Estimation for Fractional Order Systems With Impulse Noise
,”
ISA Trans.
, 82, pp.
120
129
.10.1016/j.isatra.2017.06.025
21.
Cheng
,
S.
,
Wei
,
Y.
,
Sheng
,
D.
, and
Wang
,
Y.
,
2019
, “
Identification for Hammerstein Nonlinear Systems Based on Universal Spline Fractional Order LMS Algorithm
,”
Commun. Nonlinear Sci. Numer. Simul.
,
79
, p.
104901
.10.1016/j.cnsns.2019.104901
22.
Wang
,
J.
,
Wei
,
Y.
,
Liu
,
T.
,
Li
,
A.
, and
Wang
,
Y.
,
2020
, “
Fully Parametric Identification for Continuous Time Fractional Order Hammerstein Systems
,”
J. Franklin Inst.
,
357
(
1
), pp.
651
666
.10.1016/j.jfranklin.2019.10.001
23.
Tang
,
Y.
,
Li
,
N.
,
Liu
,
M.
,
Lu
,
Y.
, and
Wang
,
W.
,
2017
, “
Identification of Fractional-Order Systems With Time Delays Using Block Pulse Functions
,”
Mech. Syst. Signal Process.
,
91
, pp.
382
394
.10.1016/j.ymssp.2017.01.008
24.
Tang
,
Y.
,
Liu
,
H.
,
Wang
,
W.
,
Lian
,
Q.
, and
Guan
,
X.
,
2015
, “
Parameter Identification of Fractional Order Systems Using Block Pulse Functions
,”
Signal Process.
,
107
, pp.
272
281
.10.1016/j.sigpro.2014.04.011
25.
Zheng
,
M.
,
Liu
,
F.
, and
Jin
,
Z.
,
2020
, “
The Global Analysis on the Spectral Collocation Method for Time Fractional Schrödinger Equation
,”
Appl. Math. Comput.
,
365
, p.
124689
.
26.
Wei
,
Y.
, and
Chen
,
Y.
,
2017
, “
Legendre Spectral Collocation Method for Volterra-Hammerstein Integral Equation of the Second Kind
,”
Acta Math. Sci.
,
37
(
4
), pp.
1105
1114
.10.1016/S0252-9602(17)30060-7
27.
Xu
,
Y.
,
Zhang
,
Y.
, and
Zhao
,
J.
,
2019
, “
Error Analysis of the Legendre-Gauss Collocation Methods for the Nonlinear Distributed-Order Fractional Differential Equation
,”
Appl. Numer. Math.
,
142
, pp.
122
138
.10.1016/j.apnum.2019.03.005
28.
Sohaib
,
M.
,
Haq
,
S.
,
Mukhtar
,
S.
, and
Khan
,
I.
,
2018
, “
Numerical Solution of Sixth-Order Boundary-Value Problems Using Legendre Wavelet Collocation Method
,”
Results Phys.
,
8
, pp.
1204
1208
.10.1016/j.rinp.2018.01.065
29.
Singh
,
R.
,
Garg
,
H.
, and
Guleria
,
V.
,
2019
, “
Haar Wavelet Collocation Method for Lane-Emden Equations With Dirichlet, Neumann and Neumann-Robin Boundary Conditions
,”
J. Comput. Appl. Math.
,
346
, pp.
150
161
.10.1016/j.cam.2018.07.004
30.
Hesameddini
,
E.
, and
Shahbazi
,
M.
,
2017
, “
Solving System of Volterra-Fredholm Integral Equations With Bernstein Polynomials and Hybrid Bernstein Block-Pulse Functions
,”
J. Comput. Appl. Math.
,
315
, pp.
182
194
.10.1016/j.cam.2016.11.004
31.
Mashayekhi
,
S.
, and
Razzaghi
,
M.
,
2015
, “
Numerical Solution of Nonlinear Fractional Integro-Differential Equations by Hybrid Functions
,”
Eng. Anal. Boundary Elem.
,
56
, pp.
81
89
.10.1016/j.enganabound.2015.02.002
32.
Podlubny
,
I.
,
Dorcak
,
L.
, and
Kostial
,
I.
,
1998
, “
On Fractional Derivatives, Fractional-Order Dynamic Systems and PIλ Dμ-Controllers
,”
Proceedings of the 36th IEEE Conference on Decision and Control
, San Diego, CA, Dec., pp.
4985
4990
.https://pdfs.semanticscholar.org/1d30/5e1412e3a4d8dfbc14cccb1e6b0c02ab71e1.pdf
33.
Mashayekhi
,
S.
, and
Razzaghi
,
M.
,
2016
, “
Numerical Solution of Distributed Order Fractional Differential Equations by Hybrid Functions
,”
J. Comput. Phys.
,
315
, pp.
169
181
.10.1016/j.jcp.2016.01.041
34.
Pirmohabbati
,
P.
,
Sheikhani
,
A. R.
,
Najafi
,
H. S.
, and
Ziabari
,
A. A.
,
2019
, “
Numerical Solution of Fractional Mathieu Equations by Using Block-Pulse Wavelets
,”
J. Ocean Eng. Sci.
,
4
(
4
), pp.
299
307
.10.1016/j.joes.2019.05.005
You do not currently have access to this content.