Abstract

Data-driven analysis and monitoring of complex dynamical systems have been gaining popularity due to various reasons like ubiquitous sensing and advanced computation capabilities. A key rationale is that such systems inherently have high dimensionality and feature complex subsystem interactions due to which majority of the first-principle based methods become insufficient. We explore the family of a recently proposed probabilistic graphical modeling technique, called spatiotemporal pattern network (STPN) in order to capture the Granger causal relationships among observations in a dynamical system. We also show that this technique can be used for anomaly detection and root-cause analysis for real-life dynamical systems. In this context, we introduce the notion of Granger-STPN (G-STPN) inspired by the notion of Granger causality and introduce a new nonparametric technique to detect causality among dynamical systems observations. We experimentally validate our framework for detecting anomalies and analyzing root causes in a robotic arm platform and obtain superior results compared to when other causality metrics were used in previous frameworks.

References

References
1.
Liu
,
C.
,
Akintayo
,
A.
,
Jiang
,
Z.
,
Henze
,
G. P.
, and
Sarkar
,
S.
,
2018
, “
Multivariate Exploration of Non-Intrusive Load Monitoring Via Spatiotemporal Pattern Network
,”
Appl. Energy
,
211
, pp.
1106
1122
.10.1016/j.apenergy.2017.12.026
2.
Liu
,
C.
,
Ghosal
,
S.
,
Jiang
,
Z.
, and
Sarkar
,
S.
,
2016
, “
An Unsupervised Spatiotemporal Graphical Modeling Approach to Anomaly Detection in Distributed Cps
,”
Proceedings of the Seventh International Conference on Cyber-Physical Systems
, Vienna, Austria, Apr. https://dl.acm.org/doi/10.5555/2984464.2984465
3.
Dunbabin
,
M.
, and
Marques
,
L.
,
2012
, “
Robots for Environmental Monitoring: Significant Advancements and Applications
,”
IEEE Rob. Autom. Mag.
,
19
(
1
), pp.
24
39
.10.1109/MRA.2011.2181683
4.
Darianian
,
M.
, and
Michael
,
M. P.
,
2008
, “
Smart Home Mobile RFID-Based Internet-of-Things Systems and Services
,”
International Conference on Advanced Computer Theory and Engineering
(
ICACTE'08
), Phuket, Thailand, Dec. 20–22, pp.
116
120
.10.1109/ICACTE.2008.180
5.
Jiang
,
Z.
,
Liu
,
C.
,
Akintayo
,
A.
,
Henze
,
G. P.
, and
Sarkar
,
S.
,
2017
, “
Energy Prediction Using Spatiotemporal Pattern Networks
,”
Appl. Energy
,
206
, pp.
1022
1039
.10.1016/j.apenergy.2017.08.225
6.
Granger
,
C. W.
,
1988
, “
Causality, Cointegration, and Control
,”
J. Econ. Dyn. Control
,
12
(
2–3
), pp.
551
559
.10.1016/0165-1889(88)90055-3
7.
Dimpfl
,
T.
, and
Peter
,
F. J.
,
2013
, “
Using Transfer Entropy to Measure Information Flows Between Financial Markets
,”
Stud. Nonlinear Dyn. Econometrics
,
17
(
1
), pp.
85
102
.10.2139/ssrn.1683948
8.
Vicente
,
R.
,
Wibral
,
M.
,
Lindner
,
M.
, and
Pipa
,
G.
,
2011
, “
Transfer Entropy–A Model-Free Measure of Effective Connectivity for the Neurosciences
,”
J. Comput. Neuroscience
,
30
(
1
), pp.
45
67
.10.1007/s10827-010-0262-3
9.
Ver Steeg
,
G.
, and
Galstyan
,
A.
,
2012
, “
Information Transfer in Social Media
,”
Proceedings of the 21st International Conference on World Wide Web
, Lyon, France, pp.
509
518
.10.1145/2187836.2187906
10.
Gupta
,
S.
, and
Ray
,
A.
,
2007
, “
Symbolic Dynamic Filtering for Data-Driven Pattern Recognition
,”
Pattern Recognit.: Theory Appl.
, 2, pp.
17
71
.
11.
Liu, C., Zhao, M., Sharma, A., and Sarkar, S., 2019, “Traffic Dynamics Exploration and Incident Detection Using Spatiotemporal Graphical Modeling,”
J. Big Data Anal. Transp.
, 1(1), pp. 37–55.https://link.springer.com/article/10.1007/s42421-019-00003-xtag reference
12.
Saha
,
H.
,
Liu
,
C.
,
Jiang
,
Z.
, and
Sarkar
,
S.
,
2018
, “
Exploring Granger Causality in Dynamical Systems Modeling and Performance Monitoring
,”
IEEE Conference on Decision and Control
(
CDC
), Miami, FL, Dec. 17–19, pp.
2537
2542
.10.1109/CDC.2018.8619530
13.
Liu
,
C.
,
Gong
,
Y.
,
Laflamme
,
S.
,
Phares
,
B.
, and
Sarkar
,
S.
,
2017
, “
Bridge Damage Detection Using Spatiotemporal Patterns Extracted From Dense Sensor Network
,”
Meas. Sci. Technol.
,
28
(
1
), p.
014011
.10.1088/1361-6501/28/1/014011
14.
Han
,
T.
,
Liu
,
C.
,
Wu
,
L.
,
Sarkar
,
S.
, and
Jiang
,
D.
,
2019
, “
An Adaptive Spatiotemporal Feature Learning Approach for Fault Diagnosis in Complex Systems
,”
Mech. Syst. Signal Process.
,
117
, pp.
170
187
.10.1016/j.ymssp.2018.07.048
15.
Tan
,
S. Y.
,
Saha
,
H.
,
Florita
,
A. R.
,
Henze
,
G. P.
, and
Sarkar
,
S.
,
2019
, “
A Flexible Framework for Building Occupancy Detection Using Spatiotemporal Pattern Networks
,” National Renewable Energy Lab. (NREL), Golden, CO, Report No. NREL/CP-5D00-73359.
16.
Liu
,
C.-L.
,
Hsaio
,
W.-H.
, and
Tu
,
Y.-C.
,
2019
, “
Time Series Classification With Multivariate Convolutional Neural Network
,”
IEEE Trans. Ind. Electron.
,
66
(
6
), pp.
4788
4797
.10.1109/TIE.2018.2864702
17.
Saha
,
H.
,
Venkataraman
,
V.
,
Speranzon
,
A.
, and
Sarkar
,
S.
,
2019
, “
A Perspective on Multi-Agent Communication for Information Fusion
,” arXiv preprint arXiv:1911.03743.
18.
Saha
,
H.
,
Tan
,
S. Y.
,
Jiang
,
Z.
, and
Sarkar
,
S.
,
2019
, “
Learning State Switching for Multi Sensor Integration
,”
Indian Control Conference (ICC)
, Hyderabad, India.
19.
Sarkar
,
S.
,
Mukherjee
,
K.
,
Sarkar
,
S.
, and
Ray
,
A.
,
2013
, “
Symbolic Dynamic Analysis of Transient Time Series for Fault Detection in Gas Turbine Engines
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
014506
.10.1115/1.4007699
20.
Liu
,
C.
,
Ghosal
,
S.
,
Jiang
,
Z.
, and
Sarkar
,
S.
,
2017
, “
An Unsupervised Anomaly Detection Approach Using Energy-Based Spatiotemporal Graphical Modeling
,”
Cyber-Phys. Syst.
,
3
(
1–4
), pp.
66
102
.10.1080/23335777.2017.1386717
21.
Liu
,
C.
,
Lore
,
K. G.
, and
Sarkar
,
S.
,
2017
, “
Data-Driven Root-Cause Analysis for Distributed System Anomalies
,”
IEEE 56th Annual Conference on Decision and Control (CDC)
, Melbourne, Australia, Dec. 12–15, pp.
5745
5750
.10.1109/CDC.2017.8264527
22.
Dorj
,
E.
,
Chen
,
C.
, and
Pecht
,
M.
,
2013
, “
A Bayesian Hidden Markov Model-Based Approach for Anomaly Detection in Electronic Systems
,”
IEEE Aerospace
Conference
, Big Sky, MT, Mar. 2–9, pp.
1
10
.10.1109/AERO.2013.6497204
23.
Fiore
,
U.
,
Palmieri
,
F.
,
Castiglione
,
A.
, and
De Santis
,
A.
,
2013
, “
Network Anomaly Detection With the Restricted Boltzmann Machine
,”
Neurocomputing
,
122
, pp.
13
23
.10.1016/j.neucom.2012.11.050
24.
Patcha
,
A.
, and
Park
,
J.-M.
,
2007
, “
An Overview of Anomaly Detection Techniques: Existing Solutions and Latest Technological Trends
,”
Comput. Networks
,
51
(
12
), pp.
3448
3470
.10.1016/j.comnet.2007.02.001
25.
Bollt
,
E. M.
,
Stanford
,
T.
,
Lai
,
Y.-C.
, and
Życzkowski
,
K.
,
2001
, “
What Symbolic Dynamics Do We Get With a Misplaced Partition?: On the Validity of Threshold Crossings Analysis of Chaotic Time-Series
,”
Phys. D
,
154
(
3–4
), pp.
259
286
.10.1016/S0167-2789(01)00242-1
You do not currently have access to this content.