Abstract
This paper presents a fast and easily implementable path tracking algorithm for robots. Usually, for a path tracking problem, the goal is to move the robot on a predefined path, while the joint velocities and accelerations are kept within their limits. This paper deals with the extended case, constraining the forces applied to the objects at the manipulator. First, a problem with a special set of constraints is presented, and a sequential solver method is formulated. The presented sequential solver algorithm has significant computational benefits compared to the direct transcription approach. Then, a practical example is introduced where the proposed algorithm can be applied. At last, the algorithm is validated by real-life experimental results with a six degrees-of-freedom robotic arm.