Abstract

This paper presents a fast and easily implementable path tracking algorithm for robots. Usually, for a path tracking problem, the goal is to move the robot on a predefined path, while the joint velocities and accelerations are kept within their limits. This paper deals with the extended case, constraining the forces applied to the objects at the manipulator. First, a problem with a special set of constraints is presented, and a sequential solver method is formulated. The presented sequential solver algorithm has significant computational benefits compared to the direct transcription approach. Then, a practical example is introduced where the proposed algorithm can be applied. At last, the algorithm is validated by real-life experimental results with a six degrees-of-freedom robotic arm.

References

1.
Kavraki
,
L. E.
, and
LaValle
,
S. M.
,
2008
, “
Motion Planning
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer
,
Berlin
, Chap.
5
.
2.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
New York
.
3.
Hauser
,
K.
,
2013
, “
Fast Interpolation and Time-Optimization on Implicit Contact Submanifolds
,”
Proceedings of Robotics: Science and Systems
, Berlin, Germany, June.http://www.roboticsproceedings.org/rss09/p22.html
4.
Lipp
,
T.
, and
Boyd
,
S.
,
2014
, “
Minimum-Time Speed Optimisation Over a Fixed Path
,”
Int. J. Control
,
87
(
6
), pp.
1297
1311
.10.1080/00207179.2013.875224
5.
Shin
,
K.
, and
McKay
,
N. D.
,
1985
, “
Minimum-Time Control of Robotic Manipulators With Geometric Path Constraints
,”
IEEE Trans. Autom. Control
,
30
(
6
), pp.
531
541
.10.1109/TAC.1985.1104009
6.
Verscheure
,
D.
,
Demeulenaere
,
B.
,
Swevers
,
J.
,
Schutter
,
J. D.
, and
Diehl
,
M.
,
2009
, “
Time-Optimal Path Tracking for Robots: A Convex Optimization Approach
,”
IEEE Trans. Autom. Control
,
54
(
10
), pp.
2318
2327
.10.1109/TAC.2009.2028959
7.
Oberherber
,
M.
,
Gattringer
,
H.
, and
Müller
,
A.
,
2015
, “
Successive Dynamic Programming and Subsequent Spline Optimization for Smooth Time Optimal Robot Path Tracking
,”
Mech. Sci.
,
6
(
2
), pp.
245
254
.10.5194/ms-6-245-2015
8.
Shen
,
P.
,
Zhang
,
X.
, and
Fang
,
Y.
,
2017
, “
Essential Properties of Numerical Integration for Time-Optimal Path-Constrained Trajectory Planning
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
888
895
.10.1109/LRA.2017.2655580
9.
Abbas
,
H.
,
Kim
,
Y.
,
Siegel
,
J. B.
, and
Rizzo
,
D. M.
,
2019
, “
Synthesis of Pontryagin's Maximum Principle Analysis for Speed Profile Optimization of All-Electric Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
7
), p.
10
.10.1115/1.4043117
10.
Ardeshiri
,
T.
,
Norrlöf
,
M.
,
Löfberg
,
J.
, and
Hansson
,
A.
,
2011
, “
Convex Optimization Approach for Time-Optimal Path Tracking of Robots With Speed Dependent Constraints
,”
Proceedings of 18th IFAC World Congress
, Milan, Italy, Aug., pp.
14648
14653
.10.3182/20110828-6-IT-1002.01136
11.
Max
,
G.
, and
Lantos
,
B.
,
2014
, “
Time Optimal Control of Four-in-Wheel-Motors Driven Electric Cars
,”
Period. Polytech. Electr. Eng. Comput. Sci.
,
58
(
4
), pp.
149
159
.10.3311/PPee.7806
12.
Flores
,
F. G.
, and
Kecskeméthy
,
A.
,
2013
, “
Time-Optimal Path Planning Along Specified Trajectories
,”
Multibody System Dynamics, Robotics and Control
,
H.
Gattringer
and
J.
Gerstmayr
, eds.,
Springer
,
Vienna
, Austria, pp.
1
16
.
13.
Pham
,
H.
, and
Pham
,
Q.
,
2018
, “
Critically Fast Pick-and-Place With Suction Cups
,” CoRR, abs/1809.03151.
14.
Kunz
,
T.
, and
Stilman
,
M.
,
2012
, “
Time-Optimal Trajectory Generation for Path Following With Bounded Acceleration and Velocity
,”
Robotics: Science and Systems VIII, Robotics: Science and Systems Foundation
, Sidney, Australia, July. http://www.roboticsproceedings.org/rss08/p27.html
15.
Csorvási
,
G.
,
Nagy
,
A.
, and
Vajk
,
I.
,
2017
, “
Near Time-Optimal Path Tracking Method for Waiter Motion Problem
,”
IFAC-Papers OnLine
,
50
(
1
), pp.
4929
4934
.10.1016/j.ifacol.2017.08.749
16.
Debrouwere
,
F.
,
Van Loock
,
W.
,
Pipeleers
,
G.
,
Diehl
,
M.
,
Swevers
,
J.
, and
De Schutter
,
J.
,
2013
, “
Convex Time-Optimal Robot Path Following With Cartesian Acceleration and Inertial Force and Torque Constraints
,”
Proc. Inst. Mech. Eng., Part I
, 227(10), pp.
724
732
.10.1177/0959651813502644
17.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
, Cambridge, UK.
18.
Davey
,
B. A.
, and
Priestley
,
H. A.
,
2002
,
Introduction to Lattices and Order
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
19.
Nagy
,
A.
, and
Vajk
,
I.
,
2019
, “
Sequential Time-Optimal Path-Tracking Algorithm for Robots
,”
IEEE Trans. Rob.
,
35
(
5
), pp.
1253
1259
.10.1109/TRO.2019.2920090
20.
Gurobi Optimization, Inc.
,
2015
, “
Gurobi Optimizer Version 6.5.1
,” Gurobi Optimization, Beaverton, OR.
21.
Corke
,
P. I.
,
2011
,
Robotics, Vision and Control: Fundamental Algorithms in Matlab
,
Springer
, New York.
22.
Mitsubishi
,
2014
, “
CR750/CR751 Series Controller Instruction Manual
,” Mitsubishi, Tokyo, Japan.
23.
Mitsubishi
,
2009
, “RV-3SD/3SDJ/3SDB/3SDBJ Series: Standard Specifications Manual,” Mitsubishi, Tokyo, Japan.
You do not currently have access to this content.