Abstract

Impaired drivers have deteriorated driving performances that may greatly endanger the road safety. It is challenging to design assistance controllers for the impaired drivers because the impaired driver behaviors are difficult to be modeled and considered in the controller design. To this end, this paper proposes a gain-scheduling composite nonlinear feedback (GCNF) controller to assist the impaired drivers. A driver-vehicle system containing the impaired driver model is developed. The steering behaviors of the impaired drivers are described by deteriorating the driver model parameters and including the driver uncertainties. Based on the driver-vehicle system, a GCNF controller integrating the gain-scheduling technique, the weighted H performance, and the composite nonlinear feedback algorithm is designed to handle the declined driving performances and improve the transient performances. The designed GCNF controller is validated in the carsim simulations. The simulation results show that the GCNF controller can effectively assist the impaired drivers of different impaired levels to reduce the trajectory tracking errors and improve the driving performances.

References

References
1.
Li
,
G.
,
Li
,
S. E.
,
Cheng
,
B.
, and
Green
,
P.
,
2017
, “
Estimation of Driving Style in Naturalistic Highway Traffic Using Maneuver Transition Probabilities
,”
Transp. Res. Part C: Emerging Technol.
,
74
, pp.
113
125
.10.1016/j.trc.2016.11.011
2.
Strayer
,
D. L.
,
Drews
,
F. A.
, and
Crouch
,
D. J.
,
2006
, “
A Comparison of the Cell Phone Driver and the Drunk Driver
,”
Human Factors
,
48
(
2
), pp.
381
391
.10.1518/001872006777724471
3.
National Highway Traffic Safety Administration,
2017
, “
Traffic Safety Facts 2017 Data: Alcohol-Impaired Driving
,”
U.S. Department of Transportation
,
Washington, DC
.
4.
National Highway Traffic Safety Administration,
2017
, “
Traffic Safety Facts: Distracted Driving 2015
,”
U.S. Department of Transportation
,
Washington, DC
.
5.
Compton
,
R. P.
, and
Berning
,
A.
,
2015
, “
National Highway Traffic Safety Administration. Traffic Safety Facts Research Note: Drugs and Alcohol Crash Risk
,”
U.S. Department of Transportation
,
Washington, DC
.
6.
Le
,
T. P.
, and
Stiharu
,
I.
,
2013
, “
An Optimal Preview Driver Model Applied to a Non-Linear Vehicle and an Impaired Driver
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
4
), pp.
536
548
.10.1177/0954407012454101
7.
Haque
,
M. M.
, and
Washington
,
S.
,
2014
, “
A Parametric Duration Model of the Reaction Times of Drivers Distracted by Mobile Phone Conversations
,”
Accid. Anal. Prev.
,
62
, pp.
42
53
.10.1016/j.aap.2013.09.010
8.
King
,
J.
,
Prasad
,
M.
,
Tsai
,
T.
,
Ming
,
Y.
, and
Lin
,
C.
,
2018
, “
Influence of Time Pressure on Inhibitory Brain Control During Emergency Driving
,”
IEEE Trans. Syst., Man, Cybern. Syst.
,
99
, pp.
1
7
.10.1109/TSMC.2018.2850323
9.
Jiang
,
Y.
,
Guo
,
S.
, and
Deng
,
S.
,
2019
, “
Denoising and Chaotic Feature Extraction of Electrocardial Signals for Driver Fatigue Detection by Kolmogorov Entropy
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
2
), p.
021013
.10.1115/1.4041355
10.
Li
,
G.
,
Wang
,
Y.
,
Zhu
,
F.
,
Sui
,
X.
,
Wang
,
N.
,
Qu
,
X.
, and
Green
,
P.
,
2019
, “
Drivers' Visual Scanning Behavior at Signalized and Unsignalized Intersections: A Naturalistic Driving Study in China
,”
J. Saf. Res.
,
71
, pp.
219
229
.10.1016/j.jsr.2019.09.012
11.
Deng
,
Z.
,
Chu
,
D.
,
Wu
,
C.
,
He
,
Y.
, and
Cui
,
J.
,
2019
, “
Curve Safe Speed Model Considering Driving Style Based on Driver Behaviour Questionnaire
,”
Transp. Res. Part F: Psychol. Behav.
,
65
, pp.
536
547
.10.1016/j.trf.2018.02.007
12.
Xing
,
Y.
, and
Lv
,
C.
,
2019
, “
Dynamic State Estimation for the Advanced Brake System of Electric Vehicles by Using Deep Recurrent Neural Networks
,”
IEEE Trans. Ind. Electron.
, epub.10.1109/TIE.2019.2952807
13.
Chen
,
Y.
,
Hu
,
C.
, and
Wang
,
J.
,
2019
, “
Motion Planning With Velocity Prediction and Composite Nonlinear Feedback Tracking Control for Lane-Change Strategy of Autonomous Vehicles
,”
IEEE Trans. Intell. Veh.
, epub.10.1109/TIV.2019.2955366
14.
Zhang
,
H.
,
Zhao
,
W.
, and
Wang
,
J.
,
2019
, “
Fault-Tolerant Control for Electric Vehicles With Independently Driven in-Wheel-Motors Considering Individual Driver Steering Characteristics
,”
IEEE Trans. Veh. Technol.
,
68
(
5
), pp.
4527
4536
.10.1109/TVT.2019.2904698
15.
Chen
,
Y.
,
Zhang
,
X.
, and
Wang
,
J.
, “
Robust Vehicle Driver Assistance Control for Handover Scenarios Considering Driving Performances
,”
IEEE Trans. Syst, Man Cyberne: Syst.
, epub.10.1109/TSMC.2019.2931484
16.
Hu
,
C.
,
Wang
,
Z.
,
Qin
,
Y.
,
Huang
,
Y.
,
Wang
,
J.
, and
Wang
,
R.
,
2019
, “
Lane Keeping Control of Autonomous Vehicles With Prescribed Performance Considering the Rollover Prevention and Input Saturation
,”
IEEE Trans. Intell. Transp. Syst.
, epub.10.1109/TITS.2019.2924937
17.
Switkes
,
J. P.
,
Rossetter
,
E. J.
,
Coe
,
I. A.
, and
Gerdes
,
J. C.
,
2006
, “
Handwheel Force Feedback for Lane Keeping Assistance: Combined Dynamics and Stability
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
3
), pp.
532
542
.10.1115/1.2229256
18.
Li
,
M.
,
Cao
,
H.
,
Song
,
X.
,
Huang
,
Y.
,
Wang
,
J.
, and
Huang
,
Z.
,
2018
, “
Shared Control Driver Assistance System Based on Driving Intention and Situation Assessment
,”
IEEE Trans. Ind. Inf.
,
14
(
11
), pp.
4982
4994
.10.1109/TII.2018.2865105
19.
Enache
,
N. M.
,
Mammar
,
S.
,
Lusetti
,
B.
, and
Sebsadji
,
Y.
,
2011
, “
Active Steering Assistance for Lane Keeping and Lane Departure Prevention
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
6
), p.
061003
.10.1115/1.4003801
20.
Lee
,
J.
,
Choi
,
J.
,
Yi
,
K.
,
Shin
,
M.
, and
Ko
,
B.
,
2014
, “
Lane-Keeping Assistance Control Algorithm Using Differential Braking to Prevent Unintended Lane Departures
,”
Control Eng. Pract.
,
23
, pp.
1
13
.10.1016/j.conengprac.2013.10.008
21.
T. P.
,
Le
,
Thanh
,
D. E.
,
Sahin
,
I.
, and
Stiharu
,
2013
, “
An Impaired Driver Model for Safe Driving by Control of Vehicle Parameters
,”
Veh. Syst. Dyn.
,
51
(
3
), pp.
377
392
.10.1080/00423114.2012.758857
22.
Mets
,
M. A. J.
,
Kuipers
,
E.
,
Domis
,
L. M.
,
Leenders
,
M.
,
Olivier
,
B.
, and
Verster
,
J. C.
,
2011
, “
Effects of Alcohol on Highway Driving in the STISIM Driving Simulator
,”
Hum. Psychopharmacol. Clin. Exp.
,
26
(
6
), pp.
434
439
.10.1002/hup.1226
23.
Chen
,
Y.
,
Hu
,
C.
, and
Wang
,
J.
,
2019
, “
Human-Centered Tracking Control for Autonomous Vehicle With Driver Cut-In Behavior Prediction
,”
IEEE Trans. Veh. Technol.
,
68
(
9
), pp.
8461
8471
.10.1109/TVT.2019.2927242
24.
Wang
,
J.
,
Zhang
,
G.
,
Wang
,
R.
,
Schnelle
,
S.
, and
Wang
,
J.
,
2017
, “
A Gain-Scheduling Driver Assistance Trajectory-Following Algorithm Considering Different Driver Steering Characteristics
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
5
), pp.
1097
1108
.10.1109/TITS.2016.2598792
25.
Chen
,
Y.
,
Stout
,
C.
,
Joshi
,
A.
,
Kuang
,
M.
, and
Wang
,
J.
,
2018
, “
Driver Assistance Lateral Motion Control for In-Wheel-Motor-Driven Electric Ground Vehicles Subject to Small Torque Variation
,”
IEEE Trans. Veh. Technol.
,
67
(
8
), pp.
6838
6850
.10.1109/TVT.2018.2817514
26.
Zhang
,
H.
,
Zhang
,
X.
, and
Wang
,
J.
,
2014
, “
Robust Gain-Scheduling Energy-to-Peak Control of Vehicle Lateral Dynamics Stabilization
,”
Veh. Syst. Dyn.
,
52
(
3
), pp.
309
340
.10.1080/00423114.2013.879190
27.
Zhang
,
G.
,
Zhang
,
H.
,
Huang
,
X.
,
Wang
,
J.
,
Yu
,
H.
, and
Graaf
,
R.
,
2016
, “
Active Fault-Tolerant Control for Electric Vehicles with Independently Driven Rear In-Wheel Motors Against Certain Actuator Faults
,”
IEEE Trans. Control Syst. Technol.
,
24
(
5
), pp.
1557
1572
.10.1109/TCST.2015.2501354
28.
Hosseini
,
S.
,
Köroğlu
,
M. H.
, and
Sjöberg
,
J.
,
2016
, “
Estimation of Parameters and Delay in Driver Models Using L1-Regularization
,”
European Control Conference
,
Aalborg, Denmark
, June 29-July 1, pp.
945
950
.10.1109/ECC.2016.7810411
29.
Chen
,
Y.
,
Zha
,
J.
, and
Wang
,
J.
,
2019
, “
An Autonomous T-Intersection Driving Strategy Considering Oncoming Vehicles Based on Connected Vehicle Technology
,”
IEEE/ASME Trans. Mechatronics
,
24
(
6
), pp.
2779
2790
.10.1109/TMECH.2019.2942769
You do not currently have access to this content.