Abstract

Inaccurate ankle angle measurement may affect gait event detection accuracy, control parameter precision and assessment validity, and even finally result in gait asymmetry. This paper proposed an adjustment method based on a strain gauge bridge to obtain accurate ankle joint angle measurement for a powered transtibial prosthesis. The characteristics of relative creep, hysteresis, and temperature were studied. Then the curving fitting was used to study the relationship between the measured value of the strain gauge bridge and the compensation angle. Three male transtibial amputees participated in the experiments. Experimental results show that the strain gauge bridge can sense the deformation of carbon-fiber footplate, and be utilized to adjust the ankle angle. The effects of an inaccurate ankle angle were further discussed.

References

1.
Shultz
,
A. H.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2016
, “
Variable Cadence Walking and ground adaptive standing With a powered ankle prosthesis
,”
IEEE Trans. Neur. Sys. Rehab.
,
24
(
4
), pp.
495
505
.10.1109/TNSRE.2015.2428196
2.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
51
66
.10.1109/TRO.2008.2008747
3.
Cherelle
,
P.
,
Grosu
,
V.
,
Matthys
,
A.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2014
, “
Design and Validation of the Ankle Mimicking Prosthetic (Amp-) Foot 2.0
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
1
), pp.
138
148
.10.1109/TNSRE.2013.2282416
4.
Wang
,
Q.
,
Yuan
,
K.
,
Zhu
,
J.
, and
Wang
,
L.
,
2015
, “
Walk the Walk: A Lightweight Active Transtibial Prosthesis
,”
IEEE Rob. Autom. Mag.
,
22
(
4
), pp.
80
89
.10.1109/MRA.2015.2408791
5.
Hitt
,
J.
,
Sugar
,
T.
,
Holgate
,
M.
,
Bellman
,
R.
, and
Hollander
,
K.
,
2009
, “
Robotic Transtibial Prosthesis With Biomechanical Energy Regeneration
,”
Ind. Rob.
,
36
(
5
), pp.
441
447
.10.1108/01439910910980169
6.
Grimmer
,
M.
,
Holgate
,
M.
,
Holgate
,
R.
,
Boehler
,
A.
,
Ward
,
J.
,
Hollander
,
K.
,
Sugar
,
T.
, and
Seyfarth
,
A.
,
2016
, “
A Powered Prosthetic Ankle Joint for Walking and running
,”
Biomed. Eng. Online
,
15
(
3
), pp.
37
52
.10.1186/s12938-016-0286-7
7.
Feng
,
Y.
, and
Wang
,
Q.
,
2017
, “
Combining Push-Off Power and Nonlinear Damping Behaviors for a Lightweight Motor-Driven Transtibial Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
22
(
6
), pp.
2512
2523
.10.1109/TMECH.2017.2766205
8.
Chen
,
Y. P. B.
,
PéRez-Arancibia
,
N. O.
,
Young
,
D.
,
Stirling
,
L.
,
Wood
,
R. J.
,
Goldfield
,
E. C.
, and
Nagpal
,
R.
,
2014
, “
Design and Control of a Bio-Inspired Soft Wearable Robotic Device for Ankle-Foot Rehabilitation
,”
Bioinspiration Biomimetics
,
9
(
1
), pp.
1
17
.10.1088/1748-3182/9/1/016007
9.
Seel
,
T.
,
Raisch
,
J.
, and
Schauer
,
T.
,
2014
, “
Imu-Based Joint Angle Measurement for Gait Analysis
,”
Sensors
,
14
(
4
), pp.
6891
6909
.10.3390/s140406891
10.
Ambrozic
,
L.
,
Gorsic
,
M.
,
Geeroms
,
J.
,
Flynn
,
L.
,
Lova
,
R. M.
,
Kamnik
,
R.
,
Munih
,
M.
, and
Vitiello
,
N.
,
2014
, “
Cyberlegs: A User-Oriented Robotic Transfemoral Prosthesis With Whole-Body Awareness Control
,”
IEEE Rob. Autom. Mag.
,
21
(
4
), pp.
82
93
.10.1109/MRA.2014.2360278
11.
Culver
,
S.
,
Bartlett
,
H.
,
Shultz
,
A.
, and
Goldfarb
,
M.
,
2018
, “
A Stair Ascent and Descent Controller for a Powered Ankle Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
5
), pp.
993
1002
.10.1109/TNSRE.2018.2819508
12.
Sˇlajpah
,
S.
,
Kamnik
,
R.
, and
Munih
,
M.
,
2014
, “
Kine- Matics Based Sensory Fusion for Wearable Motion Assessment in Human Walking
,”
Comput. Methods Programs Biomed.
,
116
(
2
), pp.
131
144
.10.1016/j.cmpb.2013.11.012
13.
Yuan
,
K.
,
Wang
,
Q.
, and
Wang
,
L.
,
2017
, “
Energy-Efficient Braking Torque Control of Robotic Transtibial Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
149
160
.10.1109/TMECH.2016.2620166
14.
Lenzi
,
T.
,
Cempini
,
M.
,
Hargrove
,
L.
, and
Kuiken
,
T.
,
2019
, “
Design, Development, and Validation of a Lightweight Non-Backdrivable Robotic Ankle Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
37
(
8
), pp.
471
482
.10.1109/TMECH.2019.2892609
15.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of an Active Electrical Knee and Ankle Prosthesis
,”
Proc. IEEE RAS&EMBS Int. Conf. Biomed. Robot. Biomechatron.
, pp.
523
528
.10.1109/BIOROB.2008.4762811
16.
Ficanha
,
E. M.
,
Ribeiro
,
G. A.
,
Dallali
,
H.
, and
Rastgaar
,
M.
,
2016
, “
Design and Preliminary Evaluation of a Two DOFs Cable-Driven Ankle-Foot Prosthesis With Active Dorsiflexion–Plantarflexion and Inversion-Eversion
,”
Front. Bioeng. Biotechnol.
,
4
(
36
), pp.
1
12
.10.3389/fbioe.2016.00036
17.
Ficanha
,
E. M.
, and
Rastgaar
,
M.
,
2014
, “
Impedance and Admittance Controller for a Multi-Axis Powered Ankle-Foot Prosthesis
,”
ASME
Paper No. DSCC2014- 6032.10.1115/DSCC2014-6032
18.
Edrich
,
T.
,
Riener
,
R.
, and
Quintern
,
J.
,
2000
, “
Analysis of Passive Elastic Joint Moment in Paraplegics
,”
IEEE Trans. Biomed. Eng.
,
47
(
8
), pp.
1058
1065
.10.1109/10.855933
19.
Zlatnik
,
D.
,
Steiner
,
B.
, and
Schweitzer
,
G.
,
2002
, “
Finite-State Control of a Trans-Femoral (tf) Prosthesis
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
408
420
.10.1109/87.998030
20.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
, “
Preliminary Evaluations of a Self- Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
4
(
6
), pp.
667
676
.10.1109/TMECH.2009.2032688
21.
Hoover
,
C. D.
,
Fulk
,
G. D.
, and
Fite
,
K. B.
,
2013
, “
Stair Ascent With a Powered Transfemoral Prosthesis Under Direct Myoelectric Control
,”
IEEE/ASME Trans. Mechatronics,
18
(
3
), pp.
1191
1200
.10.1109/TMECH.2012.2200498
22.
Parri
,
A.
,
Yuan
,
K.
,
Marconi
,
D.
,
Yan
,
T.
,
Crea
,
S.
,
Munih
,
M.
,
Lova
,
R. M.
,
Vitiello
,
N.
, and
Wang
,
Q.
,
2017
, “
Real-Time Hybrid Locomotion Mode Recognition for Lower Limb Wearable Robots
,”
IEEE/ASME Trans. Mechatronics
,
22
(
6
), pp.
2480
2491
.10.1109/TMECH.2017.2755048
23.
Kuan
,
J.
,
Pasch
,
K. A.
, and
Herr
,
H. M.
,
2018
, “
A High- Performance Cable-Drive Module for the Development of Wearable Devices
,”
IEEE/ASME Trans. Mechatronics
,
23
(
3
), pp.
1238
1248
.10.1109/TMECH.2018.2822764
24.
Dinwoodie, J. M.
, 1981, Timber: Its Nature and Behaviour, CRC Press, New York.
25.
OIML,
2020, “OIML,” International Organization of Legal Metrology, R76-1 Edition, accessed Feb. 10, 2020, http://www.oiml.org
26.
Pallas-Areny, R., and John, G. W.
, 2001, Sensors and Signal Conditioning, Wiley, New York.
27.
Gates
,
D. H.
,
2004
, “
Characterizing Ankle Function During Stair Ascent, Descent, and Level Walking for ankle prosthesis and orthosis design
,” MS thesis, Boston University, Boston, MA.
28.
Lee
,
W. C. C.
,
Zhang
,
M.
,
Chan
,
P. P. Y.
, and
Boone
,
D. A.
,
2006
, “
Gait Analysis of Low-Cost Flexible-Shank Transtibial Prostheses
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
3
), pp.
370
377
.10.1109/TNSRE.2006.881540
29.
Svoboda
,
Z.
,
Janura
,
M.
,
Cabell
,
L.
, and
Elfmark
,
M.
,
2012
, “
Variability of Kinetic Variables During Gait in Unilateral Transtibial Amputees
,”
Prosthet. Orthotics Int.
,
36
(
2
), pp.
225
230
.10.1177/0309364612439572
30.
Chen, B., Huang, X., Wei, K., and Wang, Q.
, 2015, “A Foot-Wearable Interface for Locomotion Mode Recognition Based on Discrete Contact Force Distribution,”
Mechatronics
, 32, pp. 12–21.10.1016/j.mechatronics.2015.09.002
31.
Halli, S., and Rao, K. V., 1992, Advanced Techniques of Population Analysis, Springer Science & Business Media, New York.
32.
Ossur, 2020, “Ossue,” accessed Feb. 10, 2020,
https://www.ossur.com
33.
Ottobock, 2020, “Ottobock,” accessed Feb. 10, 2020,
https://www.ottobockus.com
34.
Clites
,
T. R.
,
Carty
,
M. J.
,
Ullauri
,
J. B.
,
Carney
,
M. E.
,
Mooney
,
L. M.
,
Duval
,
J.
,
Srinivasan
,
S. S.
, and
Herr
,
H. M.
,
2018
, “
Proprioception From a Neurally Controlled Lower-Extremity Prosthesis
,”
Sci. Translational Med.
,
10
(
443
), p.
eaap8373
.10.1126/scitranslmed.aap8373
You do not currently have access to this content.