Abstract

This paper presents a new method of simulating the dynamic flow and pressure of laminar liquid flow through pipes of arbitrarily changing cross section. This method uses a segmented model based on the previously presented tapered transmission line model (TLM). This new method is computationally efficient and has comparable accuracy to previous methods such as the method of characteristics (MOC), but allow for more flexibility in solution time-step (such as accommodating variable time-step solvers), which is required if the rest of the system model has stiff equations. For the sample geometry presented, the new model calculates the dynamic response an order of magnitude faster than the previous method of characteristics solution, with minimal loss of accuracy.

References

References
1.
Montgolfier
,
J. M.
,
1803
, “
Note Sur le Bólier Hydraulique et Sur la Manière D'en Calculer Les Effets [tr. A Note on the Hydraulic Ram, and How to Calculate Its Effects]
,”
J. Mines
, 13(73), pp.
42
51
.
2.
Frizell
,
J.
,
1898
, “
Pressures Resulting From Changes of Velocity of Water in Pipes
,” Trans.Am. Soc. Civ. Eng.,
34
(1), pp. 1–7.
3.
Brown
,
F.
,
Tentarelli
,
S.
, and
Ramachandran
,
S.
,
1988
, “
A Hydraulic Rotary Switched-Inertance Servo-Transformer
,”
ASME J. Dyn. Syst., Meas., Control
,
110
(
2
), pp.
144
150
.10.1115/1.3152664
4.
Munjal
,
M. L.
,
1987
,
Acoustics of Ducts and Mufflers With Application to Exhaust and Ventilation System Design
,
Wiley
,
New York
.
5.
Johnston
,
N.
,
Pan
,
M.
,
Kudzma
,
S.
, and
Wang
,
P.
,
2014
, “
Use of Pipeline Wave Propagation Model for Measuring Unsteady Flow Rate
,”
ASME J. Fluids Eng.
,
136
(
3
), p. 031203.10.1115/1.4026106
6.
Ducasse
,
E.
,
2002
, “
An Alternative to the Traveling-Wave Approach for Use in Two-Port Descriptions of Acoustic Bores
,”
J. Acoust. Soc. Am.
,
112
(
6
), pp.
3031
3041
.10.1121/1.1515734
7.
Viersma
,
T. J.
,
1980
,
Analysis, Synthesis and Design of Hydraulic Servosystems and Pipelines
(Studies in Mechanical Engineering I),
Elsevier Science
,
Amsterdam, The Netherlands
.
8.
Muto
,
T.
,
Kinoshita
,
Y.
, and
Yoneda
,
R.
,
1981
, “
Dynamic Response of Tapered Fluid Lines (1st Report, Transfer Matrix and Frequency Response)
,”
Bull. JSME
,
24
(
191
), pp.
809
815
.10.1299/jsme1958.24.809
9.
Tahmeen
,
M.
,
Muto
,
T.
, and
Yamada
,
H.
,
2001
, “
Simulation of Dynamic Responses of Tapered Fluid Lines
,”
JSME Int. J. Ser. B Fluids Therm. Eng.
,
44
(
2
), pp.
247
254
.10.1299/jsmeb.44.247
10.
Johnston
,
D. N.
,
2006
, “
Efficient Methods for Numerical Modeling of Laminar Friction in Fluid Lines
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
4
), pp.
829
834
.10.1115/1.2361320
11.
Vítkovskà
,
J.
,
Lambert
,
M.
,
Simpson
,
A.
, and
Bergant
,
A.
,
2000
, “
Advances in Unsteady Friction Modelling in Transient Pipe Flow
,”
Eighth International Conference on Pressure Surges
, The Hague, The Netherlands, Apr. 12–14, pp.
471
482
.https://www.researchgate.net/publication/256103329_Advances_in_Unsteady_Friction_Modelling_in_Transient_Pipe_Flow
12.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
,
97
(
1
), pp. 97–105.10.1115/1.3447224
13.
Krus
,
P.
,
Weddfelt
,
K.
, and
Palmberg
,
J.-O.
,
1994
, “
Fast Pipeline Models for Simulation of Hydraulic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
1
), pp.
132
136
.10.1115/1.2900667
14.
Johnston
,
N.
,
2012
, “
The Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines
,”
J. Syst. Control Eng.
,
226
(
5
), pp.
586
597
.10.1177/0959651811430035
15.
Johnston
,
N.
,
Pan
,
M.
, and
Kudzma
,
S.
,
2014
, “
An Enhanced Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines
,”
J. Syst. Control Eng.
,
228
(
4
), pp.
193
206
.10.1177/0959651813515205
16.
Ven der Buhs
,
J.
, and
Wiens
,
T.
,
2018
, “
Modelling Dynamic Response of Hydraulic Fluid Within Tapered Transmission Lines
,”
ASME J. Dyn. Syst., Meas. Control
, 140(12), p. 0
21008
.10.3384/ecp17144197
17.
Wiens
,
T.
, and
Ven der Buhs
,
J.
,
2018
, “
An Improved Transmission Line Model for Dynamic Laminar Flow Through Tapered Tubes
,”
ASME
Paper No. FPMC2018-8881.10.1115/FPMC2018-8881
18.
Wiens
,
T.
, and
Ven der Buhs
,
J. W.
,
2019
, “
Transmission Line Modelling of Laminar Liquid Wave Propagation in Tapered Tubes
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101103
.10.1115/1.4043235
19.
Wiens
,
T. K.
,
2015
, “
Analysis and Mitigation of Valve Switching Losses in Switched Inertance Converters
,”
ASME
Paper No. FPMC2015-9600.10.1115/FPMC2015-9600
20.
Wiens
,
T.
, and
Ven der Buhs
,
J.
,
2018
, “Transmission Line Models,” University of Saskatchewan, Saskatoon, Canada, accessed Feb. 26, 2020, https://github.com/tkw954/
You do not currently have access to this content.