Abstract

The robust tracking control and accurate real-time uncertainty estimation performances by using disturbance observer-based model reference adaptive control (DOBMRAC) are proposed in this article. An example of coefficient of friction estimation system is studied to demonstrate the proposed method. First, the uncertainty adaptation law in the traditional model reference adaptive control (MRAC) was usually assumed that the uncertainty is a constant or slowly variable. The adaptation law of MRAC could not deal with the time-varying uncertainties. Therefore, a time-varying uncertainty adaptation law by disturbance observer (DOB) is designed to accurately estimate the time-varying uncertainty. Then, a Lyapunov candidate function is implemented to integrate DOB and MRAC as DOBMRAC to perform robust tracking control and accurate real-time uncertainty estimation, simultaneously. The coefficients of friction estimation system are performed to verify robust tracking control and accurate real-time estimation performance by using DOBMRAC. From the simulation results, the proposed DOBMRAC and MRAC are compared, and the proposed method shows well robust tracking control performance and real-time estimation ability. The proposed DOBMRAC has the advantages of rapid convergence responses, robust tracking control, and accurate real-time uncertainty estimation, simultaneously.

References

1.
Fung
,
R.-F.
,
Hsu
,
Y.-L.
, and
Huang
,
M.-S.
,
2009
, “
System Identification of a Dual-Stage XY Precision Positioning Table
,”
Precis. Eng.
,
33
(
1
), pp.
71
80
.10.1016/j.precisioneng.2008.04.002
2.
Fung
,
R.-F.
, and
Lin
,
W.-C.
,
2010
, “
System Identification and Contour Tracking of a Plane-Type 3-DOF (X, Y, θz) Precision Positioning Table
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
22
34
.10.1109/TCST.2008.2009528
3.
Fung
,
R.-F.
,
Kung
,
Y.-S.
, and
Wu
,
G.-C.
,
2010
, “
Dynamic Analysis and System Identification of an LCD Glass-Handling Robot Driven by a PMSM
,”
Appl. Math. Modell.
,
34
(
5
), pp.
1360
1381
.10.1016/j.apm.2009.08.020
4.
Chen
,
K.-Y.
, and
Fung
,
R.-F.
,
2017
, “
A Mechatronic Motor-Table System Identification Based on an Energetics Fitness Function
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2288
2295
.10.1109/TMECH.2017.2739122
5.
Chen
,
K.-Y.
,
Yang
,
W.-H.
, and
Fung
,
R.-F.
,
2018
, “
System Identification by Using RGA With a Reduced-Order Robust Observer for an Induction Motor
,”
Mechatronics
,
54
, pp.
1
15
.10.1016/j.mechatronics.2018.07.001
6.
Huang
,
M.-S.
,
Chen
,
K.-Y.
, and
Fung
,
R.-F.
,
2009
, “
Numerical and Experimental Identifications of a Motor-Toggle Mechanism
,”
Appl. Math. Modell.
,
33
(
5
), pp.
2502
2517
.10.1016/j.apm.2008.07.021
7.
Paleologu
,
C.
,
Benesty
,
J.
, and
Ciochina
,
S.
,
2008
, “
A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification
,”
IEEE Signal Process. Lett.
,
15
, pp.
597
600
.10.1109/LSP.2008.2001559
8.
Liu
,
Y.
,
Xie
,
L.
, and
Ding
,
F.
,
2009
, “
An Auxiliary Model Based on a Recursive Least-Squares Parameter Estimation Algorithm for Non-Uniformly Sampled Multirate Systems
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
223
(
4
), pp.
445
454
.10.1243/09596518JSCE686
9.
Wang
,
D. Q.
,
2011
, “
Least Squares-Based Recursive and Iterative Estimation for Output Error Moving Average Systems Using Data Filtering
,”
IET Control Theory Appl.
,
5
(
14
), pp.
1648
1657
.10.1049/iet-cta.2010.0416
10.
Ding
,
F.
,
Wang
,
Y.
, and
Ding
,
J.
,
2015
, “
Recursive Least Squares Parameter Identification Algorithms for Systems With Colored Noise Using the Filtering Technique and the Auxiliary Model
,”
Digital Signal Process.
,
37
, pp.
100
108
.10.1016/j.dsp.2014.10.005
11.
Liu
,
X.
, and
Lu
,
J.
,
2010
, “
Least Squares Based Iterative Identification for a Class of Multirate Systems
,”
Automatica
,
46
(
3
), pp.
549
554
.10.1016/j.automatica.2010.01.007
12.
Ding
,
F.
,
Wang
,
X.
,
Chen
,
Q.
, and
Xiao
,
Y.
,
2016
, “
Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition
,”
Circuits, Syst., Signal Process.
,
35
(
9
), pp.
3323
3338
.10.1007/s00034-015-0190-6
13.
Lee
,
D. C.
,
Lee
,
K. J.
,
Seok
,
J. K.
, and
Choi
,
J. W.
,
2005
, “
Online Capacitance Estimation of DC-Link Electrolytic Capacitors for Three-Phase AC/DC/AC PWM Converters Using Recursive Least Squares Method
,”
IEE Proc.—Electric Power Appl.
,
152
(
6
), pp.
1503
1508
.10.1049/ip-epa:20050027
14.
Duan
,
H.
,
Jia
,
J.
, and
Ding
,
R.
,
2012
, “
Two-Stage Recursive Least Squares Parameter Estimation Algorithm for Output Error Models
,”
Math. Comput. Modell.
,
55
(
3–4
), pp.
1151
1159
.10.1016/j.mcm.2011.09.039
15.
Liu
,
C.-S.
, and
Peng
,
H.
,
2000
, “
Disturbance Observer Based Tracking Control
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
2
), pp.
332
335
.10.1115/1.482459
16.
Chen
,
W.-H.
,
2004
, “
Disturbance Observer Based Control for Nonlinear Systems
,”
IEEE/ASME Trans. Mechatronics
,
9
(
4
), pp.
706
710
.10.1109/TMECH.2004.839034
17.
Sariyildiz
,
E.
, and
Ohnishi
,
K.
,
2014
, “
A Guide to Design Disturbance Observer
,”
ASME J. Dyn. Syst., Meas., Contr.
,
136
(
2
), p.
021011
.10.1115/1.4025801
18.
Ginoya
,
D.
,
Shendge
,
P. D.
, and
Phadke
,
S. B.
,
2015
, “
Disturbance Observer Based Sliding Mode Control of Nonlinear Mismatched Uncertain Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
26
(
1–3
), pp.
98
107
.10.1016/j.cnsns.2015.02.008
19.
Wen-Hua
,
C.
,
Jun
,
Y.
,
Lei
,
G.
, and
Shihua
,
L.
,
2016
, “
Disturbance-Observer-Based Control and Related Methods-An Overview
,”
IEEE Trans. Ind. Electron.
,
63
(
2
), pp.
1083
1095
. 10.1109/TIE.2015.2478397
20.
Choi
,
J.
,
Choi
,
H.
,
Kong
,
K.
, and
Hyun
,
D. J.
,
2016
, “
An Adaptive Disturbance Observer for Precision Control of Time-Varying Systems
,”
IFAC-Papers OnLine
,
49
(
21
), pp.
240
245
.10.1016/j.ifacol.2016.10.557
21.
Yao
,
J.
, and
Deng
,
W.
,
2017
, “
Active Disturbance Rejection Adaptive Control of Hydraulic Servo Systems
,”
IEEE Trans. Ind. Electron.
,
64
(
10
), pp.
8023
8032
.10.1109/TIE.2017.2694382
22.
Deng
,
W.
,
Yao
,
J.
, and
Ma
,
D.
,
2018
, “
Time-Varying Input Delay Compensation for Nonlinear Systems With Additive Disturbance: An Output Feedback Approach
,”
Int. J. Robust Nonlinear Control
,
28
(
1
), pp.
31
52
.10.1002/rnc.3853
23.
Kersting
,
S.
, and
Buss
,
M.
,
2017
, “
Direct and Indirect Model Reference Adaptive Control for Multivariable Piecewise Affine Systems
,”
IEEE Trans. Autom. Control
,
62
(
11
), pp.
5634
5649
.10.1109/TAC.2017.2690060
24.
Mushiri
,
T.
,
Mahachi
,
A.
, and
Mbohwa
,
C.
,
2017
, “
A Model Reference Adaptive Control (MRAC) System for the Pneumatic Valve of the Bottle Washer in Beverages Using Simulink
,”
Procedia Manuf.
,
7
, pp.
364
373
.10.1016/j.promfg.2016.12.003
25.
Yang
,
Y.
,
Tan
,
S.-C.
, and
Hui
,
S. Y. R.
,
2018
, “
Adaptive Reference Model Predictive Control With Improved Performance for Voltage-Source Inverters
,”
IEEE Trans. Control Syst. Technol.
,
26
(
2
), pp.
724
731
.10.1109/TCST.2017.2670529
26.
Kara
,
F.
, and
Salamci
,
M. U.
,
2018
, “
Model Reference Adaptive Sliding Surface Design for Nonlinear Systems
,”
IEEE Trans. Ind. Appl.
,
54
(
1
), pp.
611
624
.10.1109/TIA.2017.2740304
27.
Lu
,
L.-Y.
,
Avila
,
N. F.
,
Chu
,
C.-C.
, and
Yeh
,
T.-W.
,
2018
, “
Model Reference Adaptive Back-Electromotive-Force Estimators for Sensorless Control of Grid-Connected DFIGs
,”
IEEE Trans. Ind. Appl.
,
54
(
2
), pp.
1701
1711
.10.1109/TIA.2017.2765300
28.
Chen
,
K.-Y.
,
2016
, “
Sliding Mode Minimum-Energy Control for a Mechatronic Motor-Table System
,”
IEEE/ASME Trans. Mechatronics
,
21
(
3
), pp.
1487
1495
.10.1109/TMECH.2015.2503123
29.
Wittenmark
,
B.
, and
Åström
,
K. J.
,
2006
,
Adaptive Control
,
Pearson Education Taiwan Ltd
.,
Taipei, Taiwan
.
30.
Chen
,
K.-Y.
,
2017
, “
Model Reference Adaptive Minimum-Energy Control for a Mechatronic Elevator System
,”
Optimal Control Appl. Methods
,
38
(
1
), pp.
3
18
.10.1002/oca.2239
You do not currently have access to this content.