Abstract
The controlled motion of a rolling ball actuated by internal point masses that move along arbitrarily shaped rails fixed within the ball is considered. Application of the variational Pontryagin's minimum principle yields the ball's controlled equations of motion, a solution of which obeys the ball's uncontrolled equations of motion, satisfies prescribed initial and final conditions, and minimizes a prescribed performance index.
Issue Section:
Research Papers
References
1.
Sphero
, 2017
, “BB-9E by Sphero
,” Sphero, Boulder, CO, accessed Mar. 16, 2018 https://brandfolder.com/starwars/attachments/ot9ilh-ed6yeo-6aj30l/star-wars-by-sphero-bb9e_swprod17hr-0507-genericfile.jpg?dl=true&resource_key =ot8q8h-amfkps-g4rzyu&resource_type=Brandfolder
2.
Hernández
, J. D.
,
Barrientos
, J.
,
del Cerro
, J.
,
Barrientos
, A.
, and
Sanz
, D.
, 2013
, “Moisture Measurement in Crops Using Spherical Robots
,” Ind. Robot: An Int. J.
, 40
(1
), pp. 59
–66
.10.1108/01439911311294255
3.
Putkaradze
, V.
, and
Rogers
, S. M.
, 2018
, “On the Dynamics of a Rolling Ball Actuated by Internal Point Masses
,” Meccanica
, 53
(15
), pp. 3839
–3868
.10.1007/s11012-018-0904-5
4.
Putkaradze
, V.
, and
Rogers
, S. M.
, 2019
, “On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses
,” Regular Chaotic Dyn.
, 24
(2
), pp. 145
–170
.10.1134/S1560354719020023
5.
Putkaradze
, V.
, and
Rogers
, S. M.
, 2019
, “Numerical Simulations of a Rolling Ball Robot Actuated by Internal Point Masses
,” Numer. Algebra, Control Optim. (accepted).6.
Shen
, J.
,
Schneider
, D. A.
, and
Bloch
, A. M.
, 2008
, “Controllability and Motion Planning of a Multibody Chaplygin's Sphere and Chaplygin's Top
,” Int. J. Robust Nonlinear Control
, 18
(9
), pp. 905
–945
.10.1002/rnc.1259
7.
Holm
, D. D.
, 2011
, Geometric Mechanics: Rotating, Translating, and Rolling
, 2
nd ed., Imperial College Press, London.8.
Chaplygin
, S. A.
, 2002
, “On a Motion of a Heavy Body of Revolution on a Horizontal Plane
,” Regular Chaotic Dyn.
, 7
(2
), pp. 119
–130
.10.1070/RD2002v007n02ABEH000199
9.
Chaplygin
, S. A.
, 2002
, “On a Ball's Rolling on a Horizontal Plane
,” Regular Chaotic Dyn.
, 7
(2
), pp. 131
–148
.10.1070/RD2002v007n02ABEH000200
10.
Routh
, E.
, 1884
, Advanced Rigid Body Dynamics
, MacMillan
, London
.11.
Jellett
, J. H.
, 1872
, A Treatise on the Theory of Friction
, Hodges, Foster, and Company
, Dublin, Ireland
.12.
Borisov
, A. V.
,
Kilin
, A. A.
, and
Mamaev
, I. S.
, 2013
, “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball
,” Regular Chaotic Dyn.
, 18
(6
), pp. 832
–859
.10.1134/S1560354713060166
13.
Borisov
, A. V.
,
Kazakov
, A. O.
, and
Sataev
, I. R.
, 2016
, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top
,” Regular Chaotic Dyn.
, 21
(7–8
), pp. 939
–954
.10.1134/S1560354716070157
14.
Borisov
, A. V.
,
Kazakov
, A. O.
, and
Sataev
, I. R.
, 2014
, “The Reversal and Chaotic Attractor in the Non- Holonomic Model of Chaplygins Top
,” Regular Chaotic Dyn.
, 19
(6
), pp. 718
–733
.10.1134/S1560354714060094
15.
Das
, T.
,
Mukherjee
, R.
, and
Yuksel
, H.
, 2001
, “Design Considerations in the Development of a Spherical Mobile Robot
,” Proc. SPIE
4364
, pp. 61
–71
.10.1117/12.439966
16.
Amir Homayoun Javadi
, A.
, and
Mojabi
, P.
, 2002
, “Introducing August: A Novel Strategy for an Omnidirectional Spherical Rolling Robot
,” IEEE International Conference on Robotics and Automation
(ICRA'02
), Washington, DC, May 11–15, pp. 3527
–3533
.10.1109/ROBOT.2002.1014256
17.
Borisov
, A. V.
,
Kilin
, A. A.
, and
Mamaev
, I. S.
, 2012
, “How to Control Chaplygin's Sphere Using Rotors
,” Regular Chaotic Dyn.
, 17
(3–4
), pp. 258
–272
.10.1134/S1560354712030045
18.
Bolotin
, S.
, 2012
, “The Problem of Optimal Control of a Chaplygin Ball by Internal Rotors
,” Regular Chaotic Dyn.
, 17
(6
), pp. 559
–570
.10.1134/S156035471206007X
19.
Gajbhiye
, S.
, and
Banavar
, R. N.
, 2016
, “Geometric Tracking Control for a Nonholonomic System: A Spherical Robot
,” IFAC-PapersOnLine
, 49
(18
), pp. 820
–825
.10.1016/j.ifacol.2016.10.267
20.
Gajbhiye
, S.
, and
Banavar
, R. N.
, 2016
, “Geometric Modeling and Local Controllability of a Spherical Mobile Robot Actuated by an Internal Pendulum
,” Int. J. Robust Nonlinear Control
, 26
(11
), pp. 2436
–2454
.10.1002/rnc.3457
21.
Kilin
, A. A.
,
Pivovarova
, E. N.
, and
Ivanova
, T. B.
, 2015
, “Spherical Robot of Combined Type: Dynamics and Control
,” Regular Chaotic Dyn.
, 20
(6
), pp. 716
–728
.10.1134/S1560354715060076
22.
Burkhardt
, M. R.
, and
Burdick
, J. W.
, 2016
, “Reduced Dynamical Equations for Barycentric Spherical Robots
,” IEEE International Conference on Robotics and Automation
(ICRA
), Stockholm, Sweden, May 16–21, pp. 2725
–2732
.10.1109/ICRA.2016.7487434
23.
Burkhardt
, M. R.
,
Davoodi
, F.
,
Burdick
, J. W.
, and
Davoudi
, F.
, 2014
, “Energy Harvesting Analysis for Moball, a Self-Propelled Mobile Sensor Platform Capable of Long Duration Operation in Harsh Terrains
,” IEEE International Conference on Robotics and Automation
(ICRA
), Hong Kong, China, May 31–June 7, pp. 2665
–2672
.10.1109/ICRA.2014.6907241
24.
Davoodi
, F.
, and
Burdick
, J. W.
, 2014
, “Moball Network: A Self-Powered Intelligent Network of Controllable Spherical Mobile Sensors to Explore Solar Planets and Moons
,” AIAA
Paper No.
2014-4261. 10.2514/6.2014-4261
25.
Asama
, J.
,
Burkhardt
, M. R.
,
Davoodi
, F.
, and
Burdick
, J. W.
, 2015
, “Design Investigation of a Coreless Tubular Linear Generator for a Moball: A Spherical Exploration Robot With Wind-Energy Harvesting Capability
,” IEEE International Conference on Robotics and Automation
(ICRA
), Seattle, WA, May 26–30, pp. 244
–251
.10.1109/ICRA.2015.7139007
26.
Davoodi
, F.
,
Asama
, J.
,
Rais-Zadeh
, M.
,
Burdick
, J. W.
, and
Behar
, A.
, 2015
, “Moball: An Intelligent Wind-Opportunistic Mobile Sensor to Monitor the Polar Regions
,” IEEE Sensors
, Busan, Korea, Nov. 1–4,
pp. 1
–4
.10.1109/ICSENS.2015.7370545
27.
Bowkett
, J.
,
Burkhardt
, M. R.
, and
Burdick
, J. W.
, 2016
, “Combined Energy Harvesting and Control of Moball: A Barycentric Spherical Robot
,” International Symposium on Experimental Robotics
, Tokyo, Japan, pp. 71
–83
.28.
Bolotin
, S. V.
, and
Popova
, T. V.
, 2013
, “On the Motion of a Mechanical System Inside a Rolling Ball
,” Regular Chaotic Dyn.
, 18
(1–2
), pp. 159
–165
.10.1134/S1560354713010115
29.
Sphero
, 2017
, “Sphero Edu
,” Sphero, Boulder, CO, accessed Aug. 24, 2017, https://brandfolder.com/spheroedu/attachments/opnbxt-5zllfs-30z63c/sphero-edu-sprkplus-hero-genericfile.png?dl=true&resource_key=ooxisb-8l6c4o-f9z224 &resource_type= Brandfolder
30.
Pivovarova
, E. N.
, and
Ivanova
, T. B.
, 2012
, “Stability Analysis of Periodic Solutions in the Problem of the Rolling of a Ball With a Pendulum
,” Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
, (4
), pp. 146
–155
.31.
Ivanova
, T. B.
, and
Pivovarova
, E. N.
, 2013
, “Dynamics and Control of a Spherical Robot With an Axisym-Metric Pendulum Actuator
,” Russian J. Nonlinear Dyn
., 9(3), pp. 507
–520
.http://ndtest1.ics.org.ru/nd1303008/
32.
Ivanova
, T. B.
,
Kilin
, A. A.
, and
Pivovarova
, E. N.
, 2018
, “Controlled Motion of a Spherical Robot With Feedback—I
,” J. Dyn. Control Syst.
, 24
(3
), pp. 497
–510
.10.1007/s10883-017-9387-2
33.
Karavaev
, Y. L.
, and
Kilin
, A. A.
, 2016
, “Nonholonomic Dynamics and Control of a Spherical Robot With an Internal Omniwheel Platform: Theory and Experiments
,” Proc. Steklov Inst. Math.
, 295
(1
), pp. 158
–167
.10.1134/S0081543816080095
34.
Kilin
, A. A.
,
Bozek
, P.
,
Karavaev
, Y. L.
,
Klekovkin
, A. V.
, and
Shestakov
, V. A.
, 2017
, “Experimental Investigations of a Highly Maneuverable Mobile Omniwheel Robot
,” Int. J. Adv. Rob. Syst.
, 14
(6
), pp. 1
–9
.https://journals.sagepub.com/doi/full/10.1177/1729881417744570
35.
Tomik
, F.
,
Nudehi
, S.
,
Flynn
, L. L.
, and
Mukherjee
, R.
, 2012
, “Design, Fabrication and Control of Spher-Obot: A Spherical Mobile Robot
,” J. Intell. Rob. Syst.
, 67
(2
), pp. 117
–131
.10.1007/s10846-012-9652-2
36.
Ilin
, K. I.
,
Moffatt
, H. K.
, and
Vladimirov
, V. A.
, 2017
, “Dynamics of a Rolling Robot
,” Proc. Natl. Acad. Sci.
, 114
(49
), pp. 12858
–12863
.10.1073/pnas.1713685114
37.
Osborne
, J.
, and
Zenkov
, D. V.
, 1998
, “Steering the Chaplygin Sleigh by a Moving Mass
,” IEEE
Conference on Decision and Control
, Seville, Spain, Dec. 15, p. 1114
.10.1109/CDC.2005.1582307
38.
Bloch
, A.
,
Colombo
, A. L.
,
Gupta
, R.
, and
de Diego
, D. M.
, 2015
, “A Geometric Approach to the Optimal Control of Nonholonomic Mechanical Systems
,” Analysis and Geometry in Control Theory and Its Applications (INdAM Series)
, Springer
, Cham,
Switzerland
, pp. 35
–64
.39.
Putkaradze, V.
, and
Rogers, S. M.
, 2018
, “Constraint Control of Nonholonomic Mechanical Systems
,” J. Nonlinear Sci.
, 28
, pp. 193
–234
.10.1007/s00332-017-9406-1
40.
Bloch
, A. M.
, 2003
, Nonholonomic Mechanics and Control
, Vol. 24
, Springer Science & Business Media
, New York
.41.
Grong
, E.
, 2016
, “Submersions, Hamiltonian Systems, and Optimal Solutions to the Rolling Manifolds Problem
,” SIAM J. Control Optim.
, 54
(2
), pp. 536
–566
.10.1137/15M1008919
42.
Borisov
, A. V.
,
Mamaev
, I. S.
, and
Bizyaev
, I. A.
, 2017
, “Dynamical Systems With Non-Integrable Con- Straints, Vakonomic Mechanics, Sub-Riemannian Geometry, and Non-Holonomic Mechanics
,” Russ. Math. Surv.
, 72
(5
), pp. 783
–840
.10.1070/RM9783
43.
Jurdjevic
, V.
, 1993
, “The Geometry of the Plate-Ball Problem
,” Arch. Ration. Mech. Anal.
, 124
(4
), pp. 305
–328
.10.1007/BF00375605
44.
Jurdjevic
, V.
, 1999
, “Integrable Hamiltonian Systems on Lie Groups: Kowalewski Type
,” Ann. Math.
, 150
(2
), pp. 605
–644
.10.2307/121090
45.
Jurdjevic
, V.
, 1999
, “Optimal Control, Geometry, and Mechanics
,” Mathematical Control Theory
,
J.
Baillieul
, and
J. C.
Willems
, eds., Springer
, New York
, pp. 227
–268
.46.
Ohsawa
, T.
, 2020
, “Geometric Kinematic Control of a Spherical Rolling Robot
,” J. Nonlinear Sci.
, 30, pp. 67
–91
.https://link.springer.com/article/10.1007/s00332-019-09568-x
47.
Alouges
, F.
,
Chitour
, Y.
, and
Long
, R.
, 2010
, “A Motion-Planning Algorithm for the Rolling-Body Problem
,” IEEE Trans. Rob.
, 26
(5
), pp. 827
–836
.10.1109/TRO.2010.2053733
48.
Mukherjee
, R.
,
Minor
, M. A.
, and
Pukrushpan
, J. T.
, 2002
, “Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem
,” ASME J. Dyn. Syst., Meas., Control
, 124
(4
), pp. 502
–511
.10.1115/1.1513177
49.
Das
, T.
, and
Mukherjee
, R.
, 2004
, “Exponential Stabilization of the Rolling Sphere
,” Automatica
, 40
(11
), pp. 1877
–1889
.10.1016/j.automatica.2004.06.003
50.
Das
, T.
, and
Mukherjee
, R.
, 2006
, “Reconfiguration of a Rolling Sphere: A Problem in Evolute-Involute Geometry
,” ASME J. Appl. Mech.
, 73
(4
), pp. 590
–597
.10.1115/1.2164515
51.
Bai
, Y.
,
Svinin
, M.
, and
Yamamoto
, M.
, 2018
, “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot
,” Regular Chaotic Dyn.
, 23
(4
), pp. 372
–388
.10.1134/S1560354718040020
52.
Hull
, D. G.
, 2013
, Optimal Control Theory for Applications
, Springer Science & Business Media
, New York
.53.
Caillau
, J.-B.
,
Cots
, O.
, and
Gergaud
, J.
, 2012
, “Differential Continuation for Regular Optimal Control Problems
,” Optim. Methods Software
, 27
(2
), pp. 177
–196
.10.1080/10556788.2011.593625
54.
55.
Stevens
, B. L.
,
Lewis
, F. L.
, and
Johnson
, E. N.
, 2015
, Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems
, Wiley
, Hoboken, NJ
.56.
Baraff
, D.
, 2001
, “Physically Based Modeling: Rigid Body Simulation
,” SIGGRAPH Course Notes
, ACM SIGGRAPH
, pp. 2
–1
.57.
LeCun
, Y.
,
Bengio
, Y.
, and
Hinton
, G.
, 2015
, “Deep Learning
,” Nature
, 521
(7553
), pp. 436
–444
.10.1038/nature14539
58.
Betts
, J. T.
, 2010
, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, Vol. 19
, SIAM
, Philadelphia, PA
.59.
Marsden
, J. E.
, and
Ratiu
, T.
, 2013
, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems
, Vol. 17
, Springer Science & Business Media
, New York
.60.
Bates
, L.
, and
Śniatycki
, J.
, 1993
, “Nonholonomic Reduction
,” Rep. Math. Phys.
, 32
(1
), pp. 99
–115
.10.1016/0034-4877(93)90073-N
61.
Bloch
, A. M.
,
Krishnaprasad
, P. S.
,
Marsden
, J. E.
, and
Murray
, R. M.
, 1996
, “Nonholonomic Mechanical Systems With Symmetry
,” Arch. Ration. Mech. Anal.
, 136
(1
), pp. 21
–99
.10.1007/BF02199365
Copyright © 2020 by ASME
You do not currently have access to this content.