Abstract

This article proposes a novel iterative learning control (ILC) design for a type of modified Smith predictor, in particular, to control a single-input single-output unstable plant or integral process with a time delay. Frequency domain techniques are applied to synthesize the learning control law, and a sufficient condition is given to ensure robust convergence of the tracking error. Robustness of the system is studied, considering a multiplicative uncertainty. Moreover, the impact of the load disturbance over successive iterations is investigated as well. To this end, a numerical example is given to demonstrate the efficacy of the proposed approach.

References

References
1.
Mirkin
,
L.
, and
Palmor
,
Z. J.
,
2005
, “
Control Issues in Systems With Loop Delays
,”
Handbook of Networked and Embedded Control Systems
,
D.
Hristu-Varsakelis
and
W. S.
Levine
, eds.,
Birkhäuser
,
Boston, MA
, pp.
627
648
.
2.
Watanabe
,
K.
, and
Ito
,
M.
,
1981
, “
A Process-Model Control for Linear Systems With Delay
,”
IEEE Trans. Autom. Control
,
26
(
6
), pp.
1261
1269
.10.1109/TAC.1981.1102802
3.
De Paor
,
A. M.
,
1985
, “
A Modified Smith Predictor and Controller for Unstable Processes With Time Delay
,”
Int. J. Control
,
41
(
4
), pp.
1025
1036
.10.1080/0020718508961181
4.
Astrom
,
K. J.
,
Hang
,
C. C.
, and
Lim
,
B. C.
,
1994
, “
A New Smith Predictor for Controlling a Process With an Integrator and Long Dead-Time
,”
IEEE Trans. Autom. Control
,
39
(
2
), pp.
343
345
.10.1109/9.272329
5.
Majhi
,
S.
, and
Atherton
,
D. P.
,
1999
, “
Modified Smith Predictor and Controller for Processes With Time Delay
,”
IEE Proc.: Control Theory Appl.
,
146
(
5
), pp.
359
366
.10.1049/ip-cta:19990502
6.
Park
,
K. H.
,
Bien
,
Z.
, and
Hwang
,
D. H.
,
1998
, “
Design of an Iterative Learning Controller for a Class of Linear Dynamic Systems With Time Delay
,”
IEE Proc.: Control Theory Appl.
,
145
(
6
), pp.
507
512
.10.1049/ip-cta:19982409
7.
Sun
,
M.
, and
Wang
,
D.
,
2000
, “
Iterative Learning Control Design for Uncertain Dynamic Systems With Delayed States
,”
Dyn. Control
,
10
(
4
), pp.
341
357
.10.1023/A:1011269516430
8.
Tao
,
H.
,
Paszke
,
W.
,
Rogers
,
E.
,
Yang
,
H.
, and
Gałkowski
,
K.
,
2017
, “
Iterative Learning Fault-Tolerant Control for Differential Time-Delay Batch Processes in Finite Frequency Domains
,”
J. Process Control
,
56
, pp.
112
128
.10.1016/j.jprocont.2016.12.007
9.
Wang
,
L.
,
Zhu
,
C.
,
Yu
,
J.
,
Ping
,
L.
,
Zhang
,
R.
, and
Gao
,
F.
,
2017
, “
Fuzzy Iterative Learning Control for Batch Processes With Interval Time-Varying Delays
,”
Ind. Eng. Chem. Res.
,
56
(
14
), pp.
3993
4001
.10.1021/acs.iecr.6b04637
10.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst.
,
26
(
3
), pp.
96
114
.10.1109/MCS.2006.1636313
11.
Xu
,
J. X.
,
Hu
,
Q.
,
Lee
,
T. H.
, and
Yamamoto
,
S.
,
2001
, “
Iterative Learning Control With Smith Time Delay Compensator for Batch Processes
,”
J. Process Control
,
11
(
3
), pp.
321
328
.10.1016/S0959-1524(00)00034-2
12.
Hu
,
Q.
,
Xu
,
J. X.
, and
Lee
,
T. H.
,
2001
, “
Iterative Learning Control Design for Smith Predictor
,”
Syst. Control Lett.
,
44
(
3
), pp.
201
210
.10.1016/S0167-6911(01)00142-6
13.
Huang
,
H. P.
, and
Chen
,
C. C.
,
1997
, “
Control-System Synthesis for Open-Loop Unstable Process With Time Delay
,”
IEE Proc.: Control Theory Appl.
,
144
(
4
), pp.
334
346
.10.1049/ip-cta:19971222
14.
Middleton
,
R. H.
, and
Miller
,
D. E.
,
2007
, “
On the Achievable Delay Margin Using LTI Control for Unstable Plants
,”
IEEE Trans. Autom. Control
,
52
(
7
), pp.
1194
1207
.10.1109/TAC.2007.900824
15.
Sipahi
,
R.
, and
Tian
,
D.
,
2017
, “
A Closed-Loop LTI SISO System With an Unstable Open-Loop Plant Can Be Stabilized for Delays Larger Than Its Theoretical Delay-Margin Upper Bound
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26,
pp.
5147
5152
.10.23919/ACC.2017.7963753
16.
Hao
,
S.
,
Liu
,
T.
,
Paszke
,
W.
, and
Galkowski
,
K.
,
2016
, “
Robust Iterative Learning Control for Batch Processes With Input Delay Subject to Time-Varying Uncertainties
,”
IET Control Theory Appl.
,
10
(
15
), pp.
1904
1915
.10.1049/iet-cta.2016.0077
17.
Hao
,
S.
,
2019
, “
Two-Dimensional Delay Compensation Based Iterative Learning Control Scheme for Batch Processes With Both Input and State Delays
,”
J. Franklin Inst.
,
356
(
15
), pp.
8118
8137
.10.1016/j.jfranklin.2019.07.005
18.
Moore
,
K. L.
,
Dahleh
,
M.
, and
Bhattacharyya
,
S. P.
,
1992
, “
Iterative Learning Control: A Survey and New Results
,”
J. Rob. Syst.
,
9
(
5
), pp.
563
594
.10.1002/rob.4620090502
You do not currently have access to this content.