Abstract

The high force-to-weight ratios of braided fluidic artificial muscles (AMs) are ideal for human scale and mobile robot applications. Prior modeling efforts focus on the theoretical static characteristics or empirical dynamic models of these actuators when pressurized. This paper develops a comprehensive high fidelity theoretical dynamic model based on first principles for braided pneumatic AMs and presents experimental validation. A novel theoretical model for the nonlinear stiffness is derived to describe the pressure–displacement behavior. The stiffness model, together with friction, damping, and inertia models, forms an equation of motion (EOM) for braided pneumatic AMs. The EOM is coupled with first-order servopneumatic pressure dynamics, resulting in a third-order system model. System model simulations are compared to experimental results of prototypes with nine different geometries. On average, the system model is able to predict the quasi-static displacement within 7% and the dynamic response within 11%. The theoretical model is also benchmarked against a high fidelity curve fit method, with the empirical method showing a 2% improvement in only quasi-static scenarios. The model promises to be useful for mechanical system and model-based control designs.

References

References
1.
Gaylord
,
R.
,
1957
, “
Fluid Actuated Motor System and Stroking Device
,” U.S. Patent No. 2844126.
2.
Schulte
,
H. F.
,
1961
, “
The Characteristics of the McKibben Artificial Muscle
,” Application External Power Prosthetics Orthotics, Vol.
874
, National Academy of Sciences - National Research Council, Washington, DC, Appendix H, pp.
94
115
.
3.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
4.
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2000
, “
Improved Modeling and Assessment of Pneumatic Muscle Actuators
,”
IEEE
International Conference on Robotics and Automation, San Francisco, CA, Apr. 24–28
, pp.
3641
3646
.10.1109/ROBOT.2000.845299
5.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.10.1115/1.3158982
6.
Ball
,
E.
, and
Garcia
,
E.
,
2016
, “
Effects of Bladder Geometry on Pneumatic Artificial Muscles
,”
ASME J. Med. Devices
,
10
(
4
), p.
041001
.10.1115/1.4033325
7.
Thomalla
,
S.
, and
Van De Ven
,
J.
,
2018
, “
Modeling and Implementation of the McKibben Actuator in Hydraulic Systems
,”
IEEE Trans. Rob.
,
34
(
6
), pp.
1593
1602
.10.1109/TRO.2018.2864780
8.
Davis
,
S.
, and
Caldwell
,
D. G.
,
2006
, “
Braid Effects on Contractile Range and Friction Modeling in Pneumatic Artificial Muscles
,”
Int. J. Rob.
,
25
(
4
), pp.
359
369
.10.1177/0278364906063227
9.
Doumit
,
M.
, and
Leclair
,
J.
,
2017
, “
Development and Testing of Stiffness Model for Pneumatic Artificial Muscles
,”
Int. J. Mech. Sci.
,
120
, pp.
30
41
.10.1016/j.ijmecsci.2016.11.015
10.
Hannaford
,
B.
, and
Winters
,
J.
,
1990
,
Actuator Properties and Movement Control: Biological and Technical Models
(Multiple Muscle Systems: Biomechanics and Movement Organization),
Springer-Verlag
,
New York
, pp.
101
120
.
11.
Slightam
,
J. E.
, and
Nagurka
,
M. L.
,
2016
, “
PID Sliding Mode Control of Prolate Flexible Pneumatic Actuators
,”
ASME
Paper No. DSCC2016-9705.10.1115/DSCC2016-9705
12.
Koizumi
,
S.
,
Kurumaya
,
S.
,
Nabae
,
H.
,
Endo
,
G.
, and
Suzumori
,
K.
,
2018
, “
Braiding Thin McKibben Muscles to Enhance Their Contracting Abilities
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3240
3246
.10.1109/LRA.2018.2851025
13.
Morita
,
R.
,
Nabae
,
H.
,
Endo
,
G.
, and
Suzumori
,
K.
,
2018
, “
A Proposal of a New Rotational-Compliant Joint With Oil-Hydraulic McKibben Artificial Muscles
,”
J. Adv. Rob.
,
32
(
9
), pp.
511
523
.10.1080/01691864.2018.1464946
14.
Kurumaya
,
S.
,
Nabae
,
H.
,
Endo
,
G.
, and
Suzumori
,
K.
,
2018
, “
Exoskeleton Inflatable Robotic Arm With Thin McKibben Muscle
,”
IEEE
International Conference on Soft Robotics
, Livorno, Italy, Apr. 24–28, pp.
120
125
.10.1109/ROBOSOFT.2018.8404907
15.
Ganguly
,
S.
,
Garg
,
A.
,
Pasricha
,
A.
, and
Dwivedy
,
S. K.
,
2012
, “
Control of Pneumatic Artificial Muscle System Through Experimental Modelling
,”
Mechatronics
,
22
(
8
), pp.
1135
1147
.10.1016/j.mechatronics.2012.09.010
16.
Serres
,
L. J.
,
2008
, “
Dynamic Characterization of a Pneumatic Muscle Actuator and Its Application to a Resistive Training Device
,” Ph.D. dissertation, Wright State University, Dayton, OH.
17.
Hosovsky
,
A.
, and
Havran
,
M.
,
2012
, “
Dynamic Modeling of One Degree of Freedom Pneumatic Muscle-Based Actuator for Industrial Applications
,”
Tech. Gazette
,
19
(
3
), pp.
673
681
.
18.
Choi
,
T.-Y.
,
Kim
,
J.-J.
, and
Lee
,
J.-J.
,
2008
, “
Study on the Effect of Stiffness Modification at Pneumatic Muscle Actuated Manipulator
,”
SICE Annual Conference
, Chofu, Japan, Aug. 20–22, pp.
2007
2012
. 10.1109/SICE.2008.4654991
19.
Robinson
,
R. M.
,
Kothera
,
C. S.
,
Sanner
,
R. M.
, and
Wereley
,
N. M.
,
2016
, “
Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
55
68
.10.1109/TMECH.2015.2483520
20.
Slightam
,
J. E.
, and
Nagurka
,
M. L.
,
2017
, “
Robust Control of Pneumatic Artificial Muscles
,”
ASME
Paper No. FPMC2017-4225.10.1115/FPMC2017-4225
21.
Slightam
,
J. E.
, and
Nagurka
,
M. L.
,
2018
, “
Modeling of Pneumatic Artificial Muscle With Kinetic Friction and Sliding Mode Control
,”
American Control Conference
, Milwaukee, WI, June 27–29, pp.
3342
3347
.10.23919/ACC.2018.8431190
22.
Sarosi
,
J.
,
Biro
,
I.
,
Nemeth
,
J.
, and
Cveticanin
,
L.
,
2015
, “
Dynamic Modeling of a Pneumatic Muscle Actuator With Two Directional Motion
,”
Mech. Mach. Theory
,
85
, pp.
25
34
.10.1016/j.mechmachtheory.2014.11.006
23.
Doumit
,
M.
, and
Pardoel
,
S.
,
2017
, “
Dynamic Contraction Behaviour of Pneumatic Artificial Muscles
,”
Mech. Syst. Signal Process.
,
91
, pp.
93
110
.10.1016/j.ymssp.2017.01.001
24.
Ashwin
,
K. P.
, and
Ghosal
,
A.
,
2019
, “
Static Modeling of Miniaturized Pneumatic Artificial Muscles, Kinematic Analysis, and Experiments on an Endoscopic End-Effector
,”
IEEE/ASME Trans. Mechatronics
,
24
(
4
), p.
1429
.10.1109/TMECH.2019.2916783
25.
Driver
,
T. A.
, and
Shen
,
X.
,
2014
, “
Design and Control of a Sleeve Muscle-Actuated Robot Elbow
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041023
.10.1115/1.4026834
26.
Kang
,
B.
,
Kothera
,
C.
,
Woods
,
B.
, and
Wereley
,
N.
,
2009
, “
Dynamic Modeling of McKibben Pneumatic Artificial Muscles for Antagonistic Actuation
,”
International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
182
187
.10.1109/ROBOT.2009.5152280
27.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
1999
, “
McKibben Artificial Muscles: Pneumatic Actuators With Biomechanical Intelligence
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Atlanta, GA
, Sept. 19–23, pp.
221
226
. 10.1109/AIM.1999.803170
28.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
, 20(2), pp.
15
38
.10.1109/37.833638
29.
Hosovsky
,
A.
, and
Havran
,
M.
,
2016
, “
Dynamic Characterization and Simulation of Two-Link Soft Robot Arm With Pneumatic Muscles
,”
Mech. Mach. Theory
,
103
, pp.
98
116
.10.1016/j.mechmachtheory.2016.04.013
30.
Klute
,
G.
, and
Hannaford
,
B.
,
2000
, “
Accounting for Elastic Energy Storage in McKibben Artificial Muscles
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
2
), pp.
386
388
.10.1115/1.482478
31.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
32.
Rao
,
S. S.
,
2004
,
Mechanical Vibrations
, 4th ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
33.
Richer
,
E.
, and
Hurmuzlu
,
Y.
,
2000
, “
A High Performance Pneumatic Force Actuator System—Part I: Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
3
), pp.
416
425
.10.1115/1.1286336
34.
Rotaru
,
I.
,
Bujoreanu
,
C.
,
Bele
,
A.
,
Cazacu
,
M.
, and
Olaru
,
D.
,
2014
, “
Experimental Testing on Free Vibration Behaviour for Silicone Rubbers Proposed Within Lumbar Disc Prosthesis
,”
Mater. Sci. Eng. C
,
42
, pp.
192
198
.10.1016/j.msec.2014.05.021
35.
Albright Technologies, I.
,
2012
,
Silicone Molding Design Manual
, 6th ed.,
Albright Technologies
,
Leominster, MA
.
36.
Xiang
,
C.
,
Giannaccini
,
M. E.
,
Theodoridis
,
T.
,
Hao
,
L.
,
Neft-Meziani
,
S.
, and
Davis
,
S.
,
2016
, “
Variable Stiffness McKibben Muscles With Hydraulic and Pneumatic Operating Modes
,”
J. Adv. Rob.
,
30
(
13
), pp.
889
899
.10.1080/01691864.2016.1154801
37.
Horgan
,
C.
, and
Murphy
,
J.
,
2019
, “
Magic Angles in the Mechanics of Fibrous Soft Materials
,”
Mech. Soft Mater.
,
1
(
1
), pp.
1
6
.10.1007/s42558-018-0001-x
38.
Slightam
,
J. E.
, and
Nagurka
,
M. L.
,
2019
, “
Theoretical Modeling, Analysis, and Experimental Results of a Hydraulic Artificial Muscle Prototype
,”
ASME
Paper No. FPMC2019-1654.10.1115/FPMC2019-1654
You do not currently have access to this content.