Abstract

This paper aims to use bond graph modeling to create the most comprehensive finger tendon model and simulation to date. Current models are limited to either free motion without external contact or fixed finger force transmission between tendons and fingertip. The forward dynamics model, presented in this work, simultaneously simulates the kinematics of tendon-finger motion and contact forces of a central finger given finger tendon inputs. The model equations derived from bond graphs are accompanied by nonlinear relationships modeling the anatomical complexities of moment arms, tendon slacking, and joint range of motion (ROM). The structure of the model is validated using a robotic testbed, Utah's Anatomically correct Robotic Testbed (UART) finger. Experimental motion of the UART finger during free motion (no external contact) and surface contact are simulated using the bond graph model. The contact forces during the surface contact experiments are also simulated. On average, the model was able to predict the steady-state pose of the finger with joint angle errors less than 6 deg across both free motion and surface contact experiments. The static contact forces were accurately predicted with an average of 11.5% force magnitude error and average direction error of 12 deg.

References

1.
Kurse
,
M. U.
,
Lipson
,
H.
, and
Valero-Cuevas
,
F. J.
,
2012
, “
Extrapolatable Analytical Functions for Tendon Excursions and Moment Arms From Sparse Datasets
,”
IEEE Trans. Biomed. Eng.
,
59
(
6
), pp.
1572
1582
.10.1109/TBME.2012.2189771
2.
Sancho-Bru
,
J. L.
,
Perez-Gonzalez
,
A.
,
Mora
,
M. C.
,
Leon
,
B. E.
,
Vergara
,
M.
,
Iserte
,
J. L.
,
Rodriguez-Cervantes
,
P. J.
, and
Morales
,
A.
,
2011
, “
Towards a Realistic and Self-Contained Biomechanical Model of the Hand
,” Theoretical Biomechanics, InTech, Rijeka, Croatia, Chap.
10
.
3.
Valero-Cuevas
,
F. J.
,
Anand
,
V. V.
,
Saxena
,
A.
, and
Lipson
,
H.
,
2007
, “
Beyond Parameter Estimation: Extending Biomechanical Modeling by the Explicit Exploration of Model Topology
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1951
1964
.10.1109/TBME.2007.906494
4.
Leijnse
,
J. N. A. L.
,
Quesada
,
P. M.
, and
Spoor
,
C. W.
,
2010
, “
Kinematic Evaluation of the Finger's Interphalangeal Joints Coupling Mechanism-Variability, Flexion-Extension Differences, Triggers, Locking Swanneck Deformities, Anthropometric Correlations
,”
J. Biomech.
,
43
(
12
), pp.
2381
2393
.10.1016/j.jbiomech.2010.04.021
5.
Bundhoo
,
V.
,
Haslam
,
E.
,
Birch
,
B.
, and
Park
,
E. J.
,
2009
, “
A Shape Memory Alloy-Based Tendon-Driven Actuation System for Biomimetic Artificial Fingers—Part I: Design and Evaluation
,”
Robotica
,
27
(
1
), pp.
131
146
.10.1017/S026357470800458X
6.
Chiri
,
A.
,
Vitiello
,
N.
,
Giovacchini
,
F.
,
Roccella
,
S.
,
Vecchi
,
F.
, and
Carrozza
,
M. C.
,
2012
, “
Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation
,”
IEEE/ASME Trans. Mechatronics
,
17
(
5
), pp.
884
894
.10.1109/TMECH.2011.2144614
7.
Deshpande
,
A. D.
,
Xu
,
Z.
,
Weghe
,
M. J. V.
,
Brown
,
B. H.
,
Ko
,
J.
,
Chang
,
L. Y.
,
Wilkinson
,
D. D.
,
Bidic
,
S. M.
, and
Matsuoka
,
Y.
,
2013
, “
Mechanisms of the Anatomically Correct Testbed Hand
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
238
250
.10.1109/TMECH.2011.2166801
8.
Yang
,
J.
,
Pitarch
,
E. P.
,
Abdel-Malek
,
K.
,
Patrick
,
A.
, and
Lindkvist
,
L.
,
2004
, “
A Multi-Fingered Hand Prosthesis
,”
Mech. Mach. Theory
,
39
(
6
), pp.
555
581
.10.1016/j.mechmachtheory.2004.01.002
9.
Esteki
,
A.
, and
Mansour
,
J. M.
,
1997
, “
A Dynamic Model of the Hand With Application in Functional Neuromuscular Stimulation
,”
Ann. Biomed. Eng.
,
25
(
3
), pp.
440
–4
51
.10.1007/BF02684185
10.
Sancho-Bru
,
J. L.
,
Pérez-González
,
A.
,
Vergara
,
M.
, and
Giurintano
,
D. J.
,
2003
, “
A 3D Biomechanical Model of the Hand for Power Grip
,”
ASME J. Biomech. Eng.
,
125
(
1
), p.
78
.10.1115/1.1532791
11.
Sueda
,
S.
,
Kaufman
,
A.
, and
Pai
,
D. K.
,
2008
, “
Musculotendon Simulation for Hand Animation
,”
ACM Trans. Graph.
,
27
(
3
), p.
1
.10.1145/1360612.1360682
12.
Landsmeer
,
J. M. F.
,
1961
, “
Studies in the Anatomy of Articulation—I: The Equilibrium of the ‘Intercalated’ Bone
,”
Acta Morphol. Neerl.-Scand.
,
3
, pp.
287
303
.https://www.ncbi.nlm.nih.gov/pubmed/13758689
13.
Leijnse
,
J. N. A. L.
,
Bonte
,
J. E.
,
Landmeer
,
J. M. F.
,
Kalker
,
J. J.
,
Van der Meulen
,
J. C.
, and
Snijders
,
C. J.
,
1992
, “
Biomechanics of the Finger With Anatomical Restrictions—The Significance for the Exercising Hand of the Musician
,”
J. Clin. Eng.
,
25
, pp.
1253
1264
.10.1016/0021-9290(92)90281-5
14.
Leijnse
,
J. N. A. L.
, and
Kalker
,
J. J.
,
1995
, “
A Two-Dimensional Kinematic Model of the Lumbrical in the Human Finger
,”
J. Biomech.
,
28
(
3
), pp.
237
249
.10.1016/0021-9290(94)00070-K
15.
Brook
,
N.
,
Mizrahi
,
J.
,
Shoham
,
M.
, and
Dayan
,
J.
,
1995
, “
A Biomechanical Model of Index Finger Dynamics
,”
Med. Eng. Phys.
,
17
(
1
), pp.
54
63
.10.1016/1350-4533(95)90378-O
16.
Biggs
,
J.
, and
Horch
,
K.
,
1999
, “
A Three-Dimensional Kinematic Model of the Human Long Finger and the Muscles That Actuate It
,”
Med. Eng. Phys.
,
21
(
9
), pp.
625
639
.10.1016/S1350-4533(99)00095-8
17.
Landsmeer
,
J. M. F.
,
1949
, “
The Anatomy of the Dorsal Aponeurosis of the Human Finger and Its Functional Significance
,”
Anat. Rec.
,
104
(
1
), pp.
31
44
.10.1002/ar.1091040105
18.
Sancho-Bru
,
J.
,
Pérez-González
,
A.
,
Vergara-Monedero
,
M.
, and
Giurintano
,
D.
,
2001
, “
A 3-D Dynamic Model of Human Finger for Studying Free Movements
,”
J. Biomech.
,
34
(
11
), pp.
1491
1500
.10.1016/S0021-9290(01)00106-3
19.
Lee
,
S. W.
,
Chen
,
H.
,
Towles
,
J. D.
, and
Kamper
,
D. G.
,
2008
, “
Effect of Finger Posture on the Tendon Force Distribution Within the Finger Extensor Mechanism
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051014
.10.1115/1.2978983
20.
Niehues
,
T. D.
,
King
,
R. J.
, and
Deshpande
,
A. D.
,
2017
, “
Development and Validation of Modeling Framework for Interconnected Tendons Networks in Robotic and Human Fingers
,”
IEEE
International Conference on Robotics and Automation
, Singapore, May 29–June 3, pp.
4181
4186
.10.1109/ICRA.2017.7989481
21.
Gonzalez
,
R. V.
,
Buchanan
,
T. S.
, and
Delp
,
S. L.
,
1997
, “
How Muscle Architecture and Moment Arms Affect Wrist Flexion-Extension Moments
,”
J. Biomech.
,
30
(
7
), pp.
705
712
.10.1016/S0021-9290(97)00015-8
22.
Holzbaur
,
K. R. S.
,
Murray
,
W. M.
, and
Delp
,
S.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
829
840
.10.1007/s10439-005-3320-7
23.
Macintosh
,
A. R.
, and
Keir
,
P. J.
,
2017
, “
An Open-Source Model and Solution Method to Predict Co-Contraction in the Finger
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
13
), pp.
1373
1381
.10.1080/10255842.2017.1364732
24.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2012
,
System Dynamics
,
Wiley
,
Hoboken, NJ
.
25.
Vaz
,
A.
,
Singh
,
K.
, and
Dauphin-Tanguy
,
G.
,
2015
, “
Bond Graph Model of Extensor Mechanism of Finger Based on Hook-String Mechanism
,”
Mech. Mach. Theory
,
91
, pp.
187
208
.10.1016/j.mechmachtheory.2015.03.011
26.
King
,
R. J.
,
Niehues
,
T. D.
,
Rao
,
P.
,
Deshpande
,
A. D.
, and
Mascaro
,
S. A.
,
2015
, “
Validation of Fingertip Force in the ACT Hand Index Finger and Bond Graph Tendon Model
,”
ASME
Paper No. DSCC2015-9620.10.1115/DSCC2015-9620
27.
Balasubramanian
,
R.
, and
Matsuoka
,
Y.
,
2008
, “
Biological Stiffness Control Strategies for the Anatomically Correct Testbed (ACT) Hand
,”
Proceedings of IEEE International Conference On Robotics and Automation
, Pasadena, CA, May 19–23, pp.
737
742
.10.1109/ROBOT.2008.4543293
28.
Deshpande
,
A. D.
,
Balasubramanian
,
R.
,
Ko
,
J.
, and
Matsuoka
,
Y.
,
2010
, “
Acquiring Variable Moment Arms for Index Finger Using a Robotic Testbed
,”
IEEE Trans. Biomed. Eng.
,
57
(
8
), pp.
2034
2044
.10.1109/TBME.2010.2048326
29.
Xu
,
Z.
,
Kumar
,
V.
,
Matsuoka
,
Y.
, and
Todorov
,
E.
,
2012
, “
Design of an Anthropomorphic Robotic Finger System With Biomimetic Artificial Joints
,”
Proceedings on IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
, Roma, Italy, June 24–27, pp.
568
574
.10.1109/BioRob.2012.6290710
30.
Netter
,
F. H.
,
1997
,
Atlas of Human Anatomy
,
Icon Learning Systems
,
Teterboro, NJ
.
31.
Esteki
,
A.
, and
Mansour
,
J. M.
,
1996
, “
An Experimentally Based Nonlinear Viscoelastic Model of Joint Passive Moment
,”
J. Biomech.
,
29
(
4
), pp.
443
450
.10.1016/0021-9290(95)00081-X
32.
Jindrich
,
D. L.
,
Balakrishnan
,
A. D.
, and
Dennerlein
,
J. T.
,
2004
, “
Finger Joint Impedance During Tapping on a Computer Keyswitch
,”
J. Biomech.
,
37
(
10
), pp.
1589
1596
.10.1016/j.jbiomech.2004.01.001
33.
An
,
K. N.
,
Ueba
,
Y.
,
Chao
,
E. Y.
,
Cooney
,
W. P.
, and
Linscheid
,
R. L.
,
1983
, “
Tendon Excursion and Moment Arm of Index Finger Muscles
,”
J. Biomech.
,
16
(
6
), pp.
419
425
.10.1016/0021-9290(83)90074-X
34.
Leijnse
,
J. N. A. L.
,
Snijders
,
C. J.
,
Bonte
,
J. E.
,
Landsmeer
,
J. M. F.
,
Kalker
,
J. J.
,
Van der Meulen
,
J. C.
,
Sonneveld
,
G. J.
, and
Hovius
,
S. E. R.
,
1993
, “
The Hand of the Musician: The Kinematics of the Bidigital Finger System With Anatomical Restrictions
,”
J. Biomech.
,
26
(
10
), pp.
1169
1179
.10.1016/0021-9290(93)90065-M
35.
Kuo
,
P. H.
, and
Deshpande
,
A. D.
,
2012
, “
Muscle-Tendon Units Provide Limited Contributions to the Passive Stiffness of the Index Finger Metacarpophalangeal Joint
,”
J. Biomech.
,
45
(
15
), pp.
2531
2538
.10.1016/j.jbiomech.2012.07.034
36.
Valero-Cuevas
,
F. J.
,
Yi
,
J. W.
,
Brown
,
D.
,
McNamara
,
R. V.
,
Paul
,
C.
, and
Lipson
,
H.
,
2007
, “
The Tendon Network of the Fingers Performs Anatomical Computation at a Macroscopic Scale
,”
IEEE Trans. Biomed. Eng.
,
54
(
6
), pp.
1161
1166
.10.1109/TBME.2006.889200
37.
Garcia-Elias
,
M.
,
An
,
K. N.
,
Berglund
,
L. J.
,
Linscheid
,
R. L.
,
Cooney
,
W. P.
, and
Chao
,
E. Y. S.
,
1991
, “
Extensor Mechanism of the Fingers—II: Tensile Properties of Components
,”
J. Hand Surg. Am.
,
16
(
6
), pp.
1136
1140
.10.1016/S0363-5023(10)80080-2
38.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer-Verlag
,
London, UK
.
39.
Tigue
,
J. A.
, and
Mascaro
,
S. A.
,
2019
, “
Calibration and Validation of Dynamic Model for Simulating Robotic Finger Kinematics and Contact Forces
,” ASME Paper No. DSCC2019-8961.
40.
Mollica
,
R.
,
1997
, “
Nonlinear Dynamic Model and Simulation of a High Pressure Monotube Shock Absorber Using the Bond Graph Method
,” Massachusetts Institute of Technology, Cambridge, MA.
41.
King
,
R.
,
2015
, “
Development and Validation of a Bond Graph Tendon Model of the Human Finger With the Anatomically Correct Testbed (ACT) Hand
,” University of Utah, Salt Lake City, UT.
42.
Buryanov
,
A.
, and
Kotiuk
,
V.
,
2010
, “
Proportions of Hand Segments
,”
Int. J. Morphol.
,
28
(
3
), pp.
755
758
.10.4067/S0717-95022010000300015
43.
Brand
,
P. W.
, and
Hollister
,
A. M.
,
1999
,
Clinical Mechanics of the Hand
,
Mosby
,
St. Louis, MO
.
44.
Tigue
,
J. A.
,
Harris
,
S.
,
Anjewierden
,
C.
, and
Mascaro
,
S. A. S. A.
,
2017
, “
Validation of Fingertip Force and Finger Pose in the UART Finger and Bond Graph Tendon Model During Surface Contact
,”
ASME
Paper No. DSCC2017-5245.10.1115/DSCC2017-5245
45.
Niehues
,
T. D.
, and
Deshpande
,
A. D.
,
2017
, “
Variable Thumb Moment Arm Modeling and Thumb-Tip Force Production of a Human-Like Robotic Hand
,”
ASME J. Biomech. Eng.
,
139
(
10
), p.
101005
.10.1115/1.4037402
46.
Han
,
H.
,
Shimada
,
A.
, and
Kawamura
,
S.
,
1996
, “
Analysis of Friction on Human Fingers and Design of Artificial Fingers
,”
Proceedings of the IEEE ICRA
, Minneapolis, MN, Apr. 22–28, pp.
3061
3066
.10.1109/ROBOT.1996.509177
47.
Pearlman
,
J. L.
,
Roach
,
S. S.
, and
Valero-Cuevas
,
F. J.
,
2004
, “
The Fundamental Thumb-Tip Force Vectors Produced by the Muscles of the Thumb
,”
J. Orthop. Res.
,
22
(
2
), pp.
306
312
.10.1016/j.orthres.2003.08.001
48.
Goislard de Monsabert
,
B.
,
Vigouroux
,
L.
,
Bendahan
,
D.
, and
Berton
,
E.
,
2014
, “
Quantification of Finger Joint Loadings Using Musculoskeletal Modelling Clarifies Mechanical Risk Factors of Hand Osteoarthritis
,”
Med. Eng. Phys.
,
36
(
2
), pp.
177
184
.10.1016/j.medengphy.2013.10.007
You do not currently have access to this content.