Abstract

Filtering is a subset of a more general probabilistic estimation scheme for estimating the unobserved parameters from the observed measurements. For nonlinear, high speed applications, the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are common estimators; however, expensive and strongly nonlinear forward models remain a challenge. In this paper, a novel Kalman filtering algorithm for nonlinear systems is developed, where the numerical approximation is achieved via a change of measure. The accuracy is identical in the linear case and superior in two nonlinear test problems: a challenging 1D benchmarking problem and a 4D structural health monitoring problem. This increase in accuracy is achieved without the need for tuning parameters, rather relying on a more complete approximation of the underlying distributions than the Unscented Transform. In addition, when expensive forward models are used, we achieve a significant reduction in computational cost without resorting to model approximation.

References

1.
Ljung
,
L.
, and
Gunnarsson
,
S.
,
1990
, “
Adaptation and Tracking in System Identification a Survey
,”
Automatica
,
26
(
1
), pp.
7
21
.10.1016/0005-1098(90)90154-A
2.
Farrell
,
J. L.
,
1970
, “
Attitude Determination by Kalman Filtering
,”
Automatica
,
6
(
3
), pp.
419
430
.10.1016/0005-1098(70)90057-9
3.
Bierman
,
G. J.
, and
Thornton
,
C. L.
,
1977
, “
Numerical Comparison of Kalman Filter Algorithms: Orbit Determination Case Study
,”
Automatica
,
13
(
1
), pp.
23
35
.10.1016/0005-1098(77)90006-1
4.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
5.
Anderson
,
B. D.
, and
Moore
,
J. B.
,
1979
,
Optimal Filtering
, Vol.
21
, Prentice-Hall,
Englewood Cliffs, NJ
, pp.
22
95
.
6.
Einicke
,
G. A.
, and
White
,
L. B.
,
1999
, “
Robust Extended Kalman Filtering
,”
IEEE Trans. Signal Process.
,
47
(
9
), pp.
2596
2599
.10.1109/78.782219
7.
NøRgaard
,
M.
,
Poulsen
,
N. K.
, and
Ravn
,
O.
,
2000
, “
New Developments in State Estimation for Nonlinear Systems
,”
Automatica
,
36
(
11
), pp.
1627
1638
.10.1016/S0005-1098(00)00089-3
8.
Griewank
,
A.
, and
Walther
,
A.
,
2008
,
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
, Vol.
105
,
SIAM
,
Philadelphia, PA
.
9.
Gordon
,
N. J.
,
Salmond
,
D. J.
, and
Smith
,
A. F.
,
1993
, “
Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation
,”
IEEE Proceedings F (Radar and Signal Processing)
,
140
(2), pp.
107
113
.10.1049/ip-f-2.1993.0015
10.
Hu
,
J.
,
Wang
,
Z.
,
Gao
,
H.
, and
Stergioulas
,
L. K.
,
2012
, “
Extended Kalman Filtering With Stochastic Nonlinearities and Multiple Missing Measurements
,”
Automatica
,
48
(
9
), pp.
2007
2015
.10.1016/j.automatica.2012.03.027
11.
Ljung
,
L.
,
1979
, “
Asymptotic Behavior of the Extended Kalman Filter as a Parameter Estimator for Linear Systems
,”
IEEE Trans. Autom. Control
,
24
(
1
), pp.
36
50
.10.1109/TAC.1979.1101943
12.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
New Extension of the Kalman Filter to Nonlinear Systems
,”
SPIE Proc.
,
3068
, pp.
182
194
.10.1117/12.280797
13.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
A Non-Divergent Estimation Algorithm in the Presence of Unknown Correlations
,”
American Control Conference
, Albuquerque, NM, pp.
2369
2373
.10.1109/ACC.1997.609105
14.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
2004
, “
Unscented Filtering and Nonlinear Estimation
,”
Proc. IEEE
,
92
(
3
), pp.
401
422
.10.1109/JPROC.2003.823141
15.
Wan
,
E. A.
, and
Van Der Merwe
,
R.
,
2001
, “
The Unscented Kalman Filter
,”
Kalman Filtering Neural Networks
,
5
(
2007
), pp.
221
280
.10.1109/ASSPCC.2000.882463
16.
Kandepu
,
R.
,
Foss
,
B.
, and
Imsland
,
L.
,
2008
, “
Applying the Unscented Kalman Filter for Nonlinear State Estimation
,”
J. Process Control
,
18
(
7–8
), pp.
753
768
.10.1016/j.jprocont.2007.11.004
17.
Wan
,
E. A.
, and
Van Der Merwe
,
R.
,
2000
, “
The Unscented Kalman Filter for Nonlinear Estimation
,”
Adaptive Systems for Signal Processing, Communications, and Control Symposium
(AS-SPCC), IEEE, Lake Louise, AB, Canada, pp.
153
158
.
18.
Xiong
,
K.
,
Zhang
,
H.
, and
Chan
,
C.
,
2006
, “
Performance Evaluation of Ukf-Based Nonlinear Filtering
,”
Automatica
,
42
(
2
), pp.
261
270
.10.1016/j.automatica.2005.10.004
19.
Ambadan
,
J. T.
, and
Tang
,
Y.
,
2009
, “
Sigma-Point Kalman Filter Data Assimilation Methods for Strongly Nonlinear Systems
,”
J. Atmos. Sci.
,
66
(
2
), pp.
261
285
.10.1175/2008JAS2681.1
20.
Kramer
,
S. C.
, and
Sorenson
,
H. W.
,
1988
, “
Recursive Bayesian Estimation Using Piece-Wise Constant Approximations
,”
Automatica
,
24
(
6
), pp.
789
801
.10.1016/0005-1098(88)90055-6
21.
Ho
,
Y.
, and
Lee
,
R.
,
1964
, “
A Bayesian Approach to Problems in Stochastic Estimation and Control
,”
IEEE Trans. Autom. Control
,
9
(
4
), pp.
333
339
.10.1109/TAC.1964.1105763
22.
Barker
,
A. L.
,
Brown
,
D. E.
, and
Martin
,
W. N.
,
1995
, “
Bayesian Estimation and the Kalman Filter
,”
Comput. Math. Appl.
,
30
(
10
), pp.
55
77
.10.1016/0898-1221(95)00156-S
23.
Doucet
,
A.
,
De Freitas
,
N.
, and
Gordon
,
N.
,
2001
, “
An Introduction to Sequential Monte Carlo Methods
,”
Sequential Monte Carlo Methods in Practice
,
Springer
,
Cham, Switzerland
, pp.
3
14
.
24.
Cappé
,
O.
,
Godsill
,
S. J.
, and
Moulines
,
E.
,
2007
, “
An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo
,”
Proc. IEEE
,
95
(
5
), pp.
899
924
.10.1109/JPROC.2007.893250
25.
Crisan
,
D.
, and
Rozovskii
,
B.
,
2011
, The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK.
26.
Netto
,
M.
,
Gimeno
,
L.
, and
Mendes
,
M.
,
1978
, “
On the Optimal and Suboptimal Nonlinear Filtering Problem for Discrete-Time Systems
,”
IEEE Trans. Autom. Control
,
23
(
6
), pp.
1062
1067
.10.1109/TAC.1978.1101894
27.
Del Moral
,
P.
,
Doucet
,
A.
, and
Jasra
,
A.
,
2006
, “
Sequential Monte Carlo Samplers
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
68
(
3
), pp.
411
436
.10.1111/j.1467-9868.2006.00553.x
28.
Jin
,
Y.
,
2011
, “
Surrogate-Assisted Evolutionary Computation: Recent Advances and Future Challenges
,”
Swarm Evol. Comput.
,
1
(
2
), pp.
61
70
.10.1016/j.swevo.2011.05.001
29.
Amaral
,
S.
,
Allaire
,
D.
, and
Willcox
,
K.
,
2017
, “
Optimal L2-Norm Empirical Importance Weights for the Change of Probability Measure
,”
Stat. Comput.
,
27
(
3
), pp.
625
643
.10.1007/s11222-016-9644-3
30.
Mainini
,
L.
, and
Willcox
,
K.
,
2015
, “
Surrogate Modeling Approach to Support Real-Time Structural Assessment and Decision Making
,”
AIAA J.
,
53
(
6
), p.
1612
.10.2514/1.J053464
31.
Lecerf
,
M.
,
Allaire
,
D.
, and
Willcox
,
K.
,
2015
, “
Methodology for Dynamic Data-Driven Online Flight Capability Estimation
,”
AIAA J.
,
53
(
10
), pp.
3073
3087
.10.2514/1.J053893
32.
Burrows
,
B. J.
,
Isaac
,
B.
, and
Allaire
,
D.
,
2017
, “
Multitask Aircraft Capability Estimation Using Conjunctive Filters
,”
J. Aerosp. Inf. Syst.
, 14(12), pp.
1
12
.
33.
Burrows
,
B. J.
, and
Allaire
,
D.
,
2017
, “
A Comparison of Naive Bayes Classifiers With Applications to Self-Aware Aerospace Vehicles
,”
AIAA Paper No. 3819.
34.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley
,
Hoboken, NJ
.
35.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Review
,
106
(
4
), p.
620
.10.1103/PhysRev.106.620
36.
Robert
,
C. P.
,
2004
,
Monte Carlo Methods
,
Wiley Online Library
,
Hoboken, NJ
.
37.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2001
,
The Elements of Statistical Learning
(Series in Statistics, Vol. 10),
Springer
,
New York
.
38.
Scott
,
D. W.
,
2015
,
Multivariate Density Estimation: Theory, Practice, and Visualization
,
Wiley
,
Hoboken, NJ
.
39.
Vapnik
,
V.
,
1998
,
Statistical Learning Theory
, Vol.
3
,
Wiley
,
New York
.
40.
Van der Vaart
,
A. W.
,
2000
,
Asymptotic Statistics
, Vol.
3
,
Cambridge University Press
,
Cambridge, UK
, pp.
165
166
.
41.
Gretton
,
A.
,
Smola
,
A. J.
,
Huang
,
J.
,
Schmittfull
,
M.
,
Borgwardt
,
K. M.
, and
Schölkopf
,
B.
,
2009
, “
Covariate Shift by Kernel Mean Matching
,” Dataset Shift in Machine Learning, MIT Press, Cambridge, MA.
42.
Qin
,
J.
,
1998
, “
Inferences for Case-Control and Semiparametric Two-Sample Density Ratio Models
,”
Biometrika
,
85
(
3
), pp.
619
630
.10.1093/biomet/85.3.619
43.
Sugiyama
,
M.
,
Suzuki
,
T.
, and
Kanamori
,
T.
,
2012
,
Density Ratio Estimation in Machine Learning
,
Cambridge University Press
,
Cambridge, UK
.
44.
Kanamori
,
T.
,
Hido
,
S.
, and
Sugiyama
,
M.
,
2009
, “
A Least-Squares Approach to Direct Importance Estimation
,”
J. Mach. Learn. Res.
,
10
, pp.
1391
1445
.10.1145/1577069.1755831
45.
Sugiyama
,
M.
,
Yamada
,
M.
,
von Bünau
,
P.
,
Suzuki
,
T.
,
Kanamori
,
T.
, and
Kawanabe
,
M.
,
2011
, “
Direct Density-Ratio Estimation With Dimensionality Reduction Via Least-Squares Hetero-Distributional Subspace Search
,”
Neural Networks
,
24
(
2
), pp.
183
198
.10.1016/j.neunet.2010.10.005
46.
Bratley
,
P.
, and
Fox
,
B. L.
,
1988
, “
Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator
,”
ACM Trans. Math. Software (TOMS)
,
14
(
1
), pp.
88
100
.10.1145/42288.214372
47.
Morokoff
,
W. J.
, and
Caflisch
,
R. E.
,
1995
, “
Quasi-Monte Carlo Integration
,”
J. Comput. Phys.
,
122
(
2
), pp.
218
230
.10.1006/jcph.1995.1209
48.
Halton
,
J. H.
,
1964
, “
Algorithm 247: Radical-Inverse Quasi-Random Point Sequence
,”
Commun. ACM
,
7
(
12
), pp.
701
702
.10.1145/355588.365104
49.
Kish
,
L.
,
1965
, Survey Sampling, Wiley, Hoboken, NJ.
50.
Mahdyiar
,
M.
, and
Porter
,
B.
,
2005
, “
The Risk Assessment Process: The Role of Catastrophe Modeling in Dealing With Natural Hazards
,”
Catastrophe Modeling: A New Approach to Managing Risk
,
Springer
,
Boston, MA
, pp.
45
68
.
51.
Frank
,
M.
, and
Wolfe
,
P.
,
1956
, “
An Algorithm for Quadratic Programming
,”
Nav. Res. Logist. Q.
,
3
(
1–2
), pp.
95
110
.10.1002/nav.3800030109
52.
Kitagawa
,
G.
,
1987
, “
Non-Gaussian Statespace Modeling of Nonstationary Time Series
,”
J. Am. Stat. Assoc.
,
82
(
400
), pp.
1032
1041
.10.2307/2289375
53.
Allaire
,
D.
,
Chambers
,
J.
,
Cowlagi
,
R.
,
Kordonowy
,
D.
,
Lecerf
,
M.
,
Mainini
,
L.
,
Ulker
,
F.
, and
Willcox
,
K.
,
2013
, “
An Offline/Online DDDAS Capability for Self-Aware Aerospace Vehicles
,”
Procedia Comput. Sci.
,
18
, pp.
1959
1968
.
54.
Hashin
,
Z.
,
1985
, “
Analysis of Cracked Laminates: A Variational Approach
,”
Mech. Mater.
,
4
(
2
), pp.
121
136
.10.1016/0167-6636(85)90011-0
55.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Deng
,
X.
, and
Yan
,
J.
,
2016
, “
Fluid–Structure Interaction Modeling for Fatigue-Damage Prediction in Full-Scale Wind-Turbine Blades
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061010
.10.1115/1.4033080
56.
Bazilevs
,
Y.
,
Deng
,
X.
,
Korobenko
,
A.
,
di Scalea
,
F. L.
,
Todd
,
M.
, and
Taylor
,
S.
,
2015
, “
Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091008
.10.1115/1.4030795
57.
Deng
,
X.
,
Korobenko
,
A.
,
Yan
,
J.
, and
Bazilevs
,
Y.
,
2015
, “
Isogeometric Analysis of Continuum Damage in Rotation-Free Composite Shells
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
349
372
.10.1016/j.cma.2014.09.015
58.
Kaddour
,
A.
,
Hinton
,
M.
,
Smith
,
P.
, and
Li
,
S.
,
2013
, “
A Comparison Between the Predictive Capability of Matrix Cracking, Damage and Failure Criteria for Fibre Reinforced Composite Laminates: Part A of the Third World-Wide Failure Exercise
,”
J. Compos. Mater.
,
47
(
20–21
), pp.
2749
2779
.10.1177/0021998313499476
59.
Talreja
,
R.
,
2006
, “
Multi-Scale Modeling in Damage Mechanics of Composite Materials
,”
J. Mater. Sci.
,
41
(
20
), pp.
6800
6812
.10.1007/s10853-006-0210-9
60.
Talreja
,
R.
, and
Singh
,
C. V.
,
2012
,
Damage and Failure of Composite Materials
,
Cambridge University Press
,
Cambridge, UK
.
61.
Talreja
,
R.
,
2016
, “
Physical Modelling of Failure in Composites
,”
Philos. Trans. R. Soc. A
,
374
(
2071
), p.
20150280
.10.1098/rsta.2015.0280
62.
Singh
,
C. V.
, and
Talreja
,
R.
,
2008
, “
Analysis of Multiple Off-Axis Ply Cracks in Composite Laminates
,”
Int. J. Solids Struct.
,
45
(
16
), pp.
4574
4589
.10.1016/j.ijsolstr.2008.04.004
63.
Singh
,
C. V.
, and
Talreja
,
R.
,
2009
, “
A Synergistic Damage Mechanics Approach for Composite Laminates With Matrix Cracks in Multiple Orientations
,”
Mech. Mater.
,
41
(
8
), pp.
954
968
.10.1016/j.mechmat.2009.02.008
64.
Singh
,
C. V.
,
2013
, “
A Higher Order Synergistic Damage Model for Prediction of Stiffness Changes Due to Ply Cracking in Composite Laminates
,”
CMC
,
34
(
3
), pp.
227
249
.10.1016/j.proeng.2014.06.250
65.
Singh
,
C.
,
2015
, “
A Multiscale Synergistic Damage Mechanics Approach for Modeling Progressive Failure in Composite Laminates
,”
Structural Integrity and Durability of Advanced Composites
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
73
103
.
66.
Kecman
,
V.
,
Huang
,
T.-M.
, and
Vogt
,
M.
,
2005
, “
Iterative Single Data Algorithm for Training Kernel Machines From Huge Data Sets: Theory and Performance
,”
Support Vector Machines: Theory and Applications
,
Springer
,
Cham, Switzerland
, pp.
255
274
.
67.
Platt
,
J. C.
,
1998
, “
Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines
,”Advances In Kernel Methods - Support Vector Learning.
68.
Fan
,
R.-E.
,
Chen
,
P.-H.
, and
Lin
,
C.-J.
,
2005
, “
Working Set Selection Using Second Order Information for Training Support Vector Machines
,”
J. Mach. Learn. Res.
,
6
, pp.
1889
1918
.https://dl.acm.org/citation.cfm?id=1194907
69.
Chen
,
P.-H.
,
Fan
,
R.-E.
, and
Lin
,
C.-J.
,
2006
, “
A Study on SMO-Type Decomposition Methods for Support Vector Machines
,”
IEEE Trans. Neural Networks
,
17
(
4
), pp.
893
908
.10.1109/TNN.2006.875973
70.
Bengtsson
,
T.
,
Bickel
,
P.
, and
Li
,
B.
,
2008
, “
Curse-of-Dimensionality Revisited: Collapse of the Particle Filter in Very Large Scale Systems
,”
Probability and Statistics: Essays in Honor of David A. Freedman
,
Institute of Mathematical Statistics
,
Bethesda, MD
, pp.
316
334
.
71.
Van Leeuwen
,
P.
,
2012
, “
Particle Filters for the Geosciences
,” Advanced Data Assimilation for Geosciences (Lecture Notes of the Les Houches School of Physics: Special Issue), Madison, WI, p.
291
.
72.
Eckart
,
C.
, and
Young
,
G.
,
1936
, “
The Approximation of One Matrix by Another of Lower Rank
,”
Psychometrika
,
1
(
3
), pp.
211
218
.10.1007/BF02288367
You do not currently have access to this content.