Abstract

An adaptive controller design technique based on internal model control (IMC) scheme is proposed in this paper. Multiple IMC controllers having different values of filter time constants and exhibiting widely different performance are combined via weight update rule. The weight update rule, formulated via convex combination of integral and fractional order gradient descent algorithms, assigns time varying weights to individual candidate controllers to obtain an enhanced performance over the individual candidate controllers. The beauty of the proposed technique is that it employs the simplicity of one degree-of-freedom (1DOF) IMC structure to achieve an improved performance over existing 2DOF control schemes. The efficacy of the proposed technique is demonstrated via three illustrative examples and via experimental validation on the hardware setup of dc servosystem. An extensive comparative analysis in terms of simulation plots and performance indices offers a testimony to the effectiveness of the proposed scheme.

References

References
1.
Rivera
,
D. E.
,
Morari
,
M.
, and
Skogestad
,
S.
,
1986
, “
Internal Model Control: PID Controller Design
,”
Ind. Eng. Chem. Process Des. Dev.
,
25
(
1
), pp.
252
265
.10.1021/i200032a041
2.
Saxena
,
S.
, and
Hote
,
Y. V.
,
2012
, “
Advances in Internal Model Control Technique: A Review and Future Prospects
,”
IETE Tech. Rev.
,
29
(
6
), pp.
461
472
.10.4103/0256-4602.105001
3.
Lennartson
,
B.
, and
Kristiansson
,
B.
,
2009
, “
Evaluation and Tuning of Robust PID Controllers
,”
IET Control Theory Appl.
,
3
(
3
), pp.
294
302
.10.1049/iet-cta:20060450
4.
Yazdanian
,
M.
, and
Mehrizi-Sani
,
A.
,
2014
, “
Internal Model-Based Current Control of the RL Filter-Based Voltage-Sourced Converter
,”
IEEE Trans. Energy Convers.
,
29
(
4
), pp.
873
881
.10.1109/TEC.2014.2353035
5.
Krohling
,
R. A.
, and
Rey
,
J. P.
,
2001
, “
Design of Optimal Disturbance Rejection PID Controllers Using Genetic Algorithms
,”
IEEE Trans. Evol. Comput.
,
5
(
1
), pp.
78
82
.10.1109/4235.910467
6.
Li
,
K.
,
2013
, “
PID Tuning for Optimal Closed-Loop Performance With Specified Gain and Phase Margins
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
1024
1030
.10.1109/TCST.2012.2198479
7.
Mummadi
,
V.
,
2011
, “
Design of Robust Digital PID Controller for H-Bridge Soft-Switching Boost Converter
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2883
2897
.10.1109/TIE.2010.2077615
8.
Yang
,
T.
,
Sun
,
N.
,
Chen
,
H.
, and
Fang
,
Y.
,
2020
, “
Neural Network-Based Adaptive Antiswing Control of an Underactuated Ship-Mounted Crane With Roll Motions and Input Dead Zones
,”
IEEE Trans. Neural Networks Learn. Syst.
,
31
(
3
), pp.
901
914
.10.1109/TNNLS.2019.2910580
9.
Sun
,
N.
,
Liang
,
D.
,
Wu
,
Y.
,
Chen
,
Y.
,
Qin
,
Y.
, and
Fang
,
Y.
,
2020
, “
Adaptive Control for Pneumatic Artificial Muscle Systems With Parametric Uncertainties and Unidirectional Input Constraints
,”
IEEE Trans. Ind. Inf.
,
16
(
2
), pp.
969
979
.10.1109/TII.2019.2923715
10.
Shojaei
,
K.
,
2019
, “
An Adaptive Output Feedback Proportional-Integral-Derivative Controller for n-Link Type (m,s) Electrically Driven Mobile Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
9
), p.
091001
.10.1115/1.4043053
11.
Morari
,
M.
,
1983
, “
Internal Model Control—Theory and Applications
,”
IFAC Proc. Vol.
,
16
(
21
), pp.
1
18
.10.1016/S1474-6670(17)64183-1
12.
Garcia
,
C. E.
, and
Morari
,
M.
,
1982
, “
Internal Model Control. A Unifying Review and Some New Results
,”
Ind. Eng. Chem. Process Des. Develop.
,
21
(
2
), pp.
308
323
.10.1021/i200017a016
13.
Brosilow
,
C.
, and
Joseph
,
B.
,
2002
,
Techniques of Model-Based Control
,
Prentice Hall Professional
, Englewood Cliffs, NJ.
14.
Liu
,
K.
,
Shimizu
,
T.
,
Inagaki
,
M.
, and
Ohkawa
,
A.
,
1998
, “
New Tuning Method for IMC Controller
,”
J. Chem. Eng. Jpn.
,
31
(
3
), pp.
320
324
.10.1252/jcej.31.320
15.
Horn
,
I. G.
,
Arulandu
,
J. R.
,
Gombas
,
C. J.
,
VanAntwerp
,
J. G.
, and
Braatz
,
R. D.
,
1996
, “
Improved Filter Design in Internal Model Control
,”
Ind. Eng. Chem. Res.
,
35
(
10
), pp.
3437
3441
.10.1021/ie9602872
16.
Ali
,
A.
, and
Majhi
,
S.
,
2009
, “
PI/PID Controller Design Based on IMC and Percentage Overshoot Specification to Controller Setpoint Change
,”
ISA Trans.
,
48
(
1
), pp.
10
15
.10.1016/j.isatra.2008.09.002
17.
Kaya
,
I.
,
2004
, “
Two-Degree-of-Freedom IMC Structure and Controller Design for Integrating Processes Based on Gain and Phase-Margin Specifications
,”
IEE Proc.–Control Theory Appl.
,
151
(
4
), pp.
481
487
.10.1049/ip-cta:20040658
18.
Liu
,
T.
, and
Gao
,
F.
,
2010
, “
New Insight Into Internal Model Control Filter Design for Load Disturbance Rejection
,”
IET Control Theory Appl.
,
4
(
3
), pp.
448
460
.10.1049/iet-cta.2008.0472
19.
Shamsuzzoha
,
M.
, and
Lee
,
M.
,
2008
, “
Analytical Design of Enhanced PID Filter Controller for Integrating and First Order Unstable Processes With Time Delay
,”
Chem. Eng. Sci.
,
63
(
10
), pp.
2717
2731
.10.1016/j.ces.2008.02.028
20.
Fu
,
G.
,
Shi
,
D.
, and
Zhao
,
S.
,
2009
, “
An IMC-PID Controller Tuning Strategy Based on the DE and NLJ Hybrid Algorithm
,”
ISECS International Colloquium on Computing, Communication, Control, and Management
, Vol.
2
, Sanya, China, Aug. 8–9, pp.
307
310
.10.1109/CCCM.2009.5270435
21.
Jin
,
Q. B.
, and
Liu
,
Q.
,
2014
, “
IMC-PID Design Based on Model Matching Approach and Closed-Loop Shaping
,”
ISA Trans.
,
53
(
2
), pp.
462
473
.10.1016/j.isatra.2013.11.005
22.
Sonker
,
B.
,
Kumar
,
D.
, and
Samuel
,
P.
,
2019
, “
Dual Loop IMC Structure for Load Frequency Control Issue of Multi-Area Multi-Sources Power Systems
,”
Int. J. Electr. Power Energy Syst.
,
112
, pp.
476
494
.10.1016/j.ijepes.2019.04.042
23.
Verma
,
B.
, and
Padhy
,
P. K.
,
2019
, “
Indirect IMC-PID Controller Design
,”
IET Control Theory Appl.
,
13
(
2
), pp.
297
305
.10.1049/iet-cta.2018.5454
24.
Chekari
,
T.
,
Mansouri
,
R.
, and
Bettayeb
,
M.
,
2019
, “
Improved Internal Model Control-Proportional-Integral-Derivative Fractional-Order Multiloop Controller Design for Non Integer Order Multivariable Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
1
), p.
011014
.10.1115/1.4041353
25.
Tan
,
W.
,
2010
, “
Unified Tuning of PID Load Frequency Controller for Power Systems Via IMC
,”
IEEE Trans. Power Syst.
,
25
(
1
), pp.
341
350
.10.1109/TPWRS.2009.2036463
26.
Saxena
,
S.
, and
Hote
,
Y. V.
,
2013
, “
Load Frequency Control in Power Systems Via Internal Model Control Scheme and Model-Order Reduction
,”
IEEE Trans. Power Syst.
,
28
(
3
), pp.
2749
2757
.10.1109/TPWRS.2013.2245349
27.
Hanwate
,
S.
,
Hote
,
Y. V.
, and
Saxena
,
S.
,
2018
, “
Adaptive Policy for Load Frequency Control
,”
IEEE Trans. Power Syst.
,
33
(
1
), pp.
1142
1144
.10.1109/TPWRS.2017.2755468
28.
Tan
,
W.
, and
Fu
,
C.
,
2016
, “
Linear Active Disturbance-Rejection Control: Analysis and Tuning Via IMC
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2350
2359
.10.1109/TIE.2015.2505668
29.
Tian
,
Y.-C.
,
Tadé
,
M. O.
, and
Tang
,
J.
,
1999
, “
A Nonlinear PID Controller With Applications
,”
IFAC Proc. Vol.
,
32
(
2
), pp.
2657
2661
.10.1016/S1474-6670(17)56452-6
30.
Biradar
,
S.
,
Hote
,
Y. V.
, and
Saxena
,
S.
,
2016
, “
Reduced-Order Modeling of Linear Time Invariant Systems Using Big Bang Big Crunch Optimization and Time Moment Matching Method
,”
Appl. Math. Model.
,
40
(
15–16
), pp.
7225
7244
.10.1016/j.apm.2016.03.006
31.
Khan
,
S.
,
Naseem
,
I.
,
Malik
,
M. A.
,
Togneri
,
R.
, and
Bennamoun
,
M.
,
2018
, “
A Fractional Gradient Descent-Based RBF Neural Network
,”
Circuits, Syst., Signal Process.
,
37
(
12
), pp.
5311
5332
.10.1007/s00034-018-0835-3
32.
Monje
,
C. A.
,
Chen
,
Y.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu-Batlle
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer-Verlag
,
London
.
33.
Jumarie
,
G.
,
2006
, “
Modified Riemann-Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results
,”
Comput. Math. Appl.
,
51
(
9–10
), pp.
1367
1376
.10.1016/j.camwa.2006.02.001
34.
Astrom
,
K.
, and
Hagglund
,
T.
,
2000
, “
Benchmark Systems for PID Control
,”
IFAC Proc. Vol.
,
33
(
4
), pp.
165
166
.10.1016/S1474-6670(17)38238-1
35.
Moore
,
B.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
,
26
(
1
), pp.
17
32
.10.1109/TAC.1981.1102568
36.
Ananthoju
,
R.
,
Tiwari
,
A.
, and
Belur
,
M. N.
,
2017
, “
Model Reduction of AHWR Space-Time Kinetics Using Balanced Truncation
,”
Ann. Nucl. Energy
,
102
, pp.
454
464
.10.1016/j.anucene.2016.10.005
37.
Quanser, Inc.
,
2013
,
USER MANUAL QUBE-Servo Rotary Servo Experiment Set Up and Configuration
,
Quanser
, Markham, Canada.
You do not currently have access to this content.