Abstract

A new design of an inverse optimal boundary control law is first proposed to force a one-link rotating flexible arm with a tip mass subject to bounded disturbances to track a reference model. The proposed boundary control law ensures global practical exponential stability of the tracking error system and is optimal in the sense that it minimizes a cost functional that appropriately penalizes both the tracking errors and the boundary control without having to solve a Hamilton–Jacobi–Bellman equation. Based on the above boundary control development, an observer-control approach is proposed to design a new inverse optimal observer that globally practically exponentially estimates the one-link rotating flexible arm's states using only measurements at the actuated boundary.

References

References
1.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, A Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.10.1016/j.mechmachtheory.2006.01.014
2.
Lewis
,
F. L.
,
Dawson
,
D. M.
, and
Abdallah
,
C. T.
,
2004
,
Robot Manipulator Control: Theory and Practice
, 2nd ed.,
Marcel Dekker
,
New York
.
3.
Li
,
S.
, and
Jin
,
L.
,
2018
,
Competition-Based Neural Networks With Robotic Applications
,
Springer Nature
,
Singapore
.
4.
Li
,
S.
,
Zhou
,
M.
, and
Luo
,
X.
,
2018
, “
Modified Primal-Dual Neural Networks for Motion Control of Redundant Manipulators With Dynamic Rejection of Harmonic Noises
,”
IEEE Trans. Neural Networks Learn. Syst.
,
29
(
10
), pp.
4791
4801
.10.1109/TNNLS.2017.2770172
5.
Li
,
S.
,
Wang
,
H.
, and
Rafique
,
M. U.
,
2018
, “
A Novel Recurrent Neural Network for Manipulator Control With Improved Noise Tolerance
,”
IEEE Trans. Neural Networks Learn. Syst.
,
29
(
5
), pp.
1908
1918
.10.1109/TNNLS.2017.2672989
6.
Li
,
S.
,
He
,
J.
,
Li
,
Y.
, and
Rafique
,
M. U.
,
2017
, “
Distributed Recurrent Neural Networks for Cooperative Control of Manipulators: A Game-Theoretic Perspective
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
2
), pp.
415
426
.10.1109/TNNLS.2016.2516565
7.
Li
,
S.
,
Zhang
,
Y.
, and
Jin
,
L.
,
2017
, “
Kinematic Control of Redundant Manipulators Using Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
10
), pp.
2243
2254
.10.1109/TNNLS.2016.2574363
8.
Benosman
,
M.
, and
Vey
,
G. L.
,
2004
, “
Control of Flexible Manipulators: A Survey
,”
Robotica
,
22
(
5
), pp.
533
545
.10.1017/S0263574703005642
9.
Kiang
,
C. T.
,
Spowage
,
A.
, and
Yoong
,
C. K.
,
2015
, “
Review of Control and Sensor System of Flexible Manipulator
,”
J. Intell. Rob. Syst.
,
77
(
1
), pp.
187
213
.10.1007/s10846-014-0071-4
10.
WeiMin
,
T.
,
Mingjun
,
Z.
,
Liu
,
M.
, and
Yun
,
X.
,
2006
, “
Residual Vibration Analysis and Suppression for Scara Robots in Semiconductor Manufacturing
,”
Int. Conf. Intell. Robots Syst.
, 11, pp.
5153
5158
.
11.
Duke Energy,
2019
, “
Every Week is Robotics Week at a Nuclear Plant
,” Nuclear Information Center, Charlotte, NC, accessed Oct. 31, 2019, https://nuclear.duke-energy.com/2013/04/09/every-week-is-robotics-week-at-a-nuclear-plant/
12.
Vazquez
,
R.
,
Rubio-Sierra
,
F. J.
, and
Stark
,
R. W.
,
2007
, “
Multimodal Analysis of Force Spectroscopy Based on a Transfer Function Study of Micro-Cantilevers
,”
Nanotechnology
,
18
(
18
), p.
185504
.10.1088/0957-4484/18/18/185504
13.
Lambeck
,
S.
,
Sawodny
,
O.
, and
Arnold
,
E.
,
2006
, “
Trajectory Tracking Control for a New Generation of Fire Rescue Turntable Ladders
,”
IEEE
Conference on Robotics, Automation and Mechatronics
, Bangkok, Thailand, June 25–28, pp.
1
6
.10.1109/RAMECH.2006.252757
14.
Do
,
K. D.
,
2017
, “
Modeling and Boundary Control of Translational and Rotational Motions of Nonlinear Slender Beams in Three-Dimensional Space
,”
J. Sound Vib.
,
389
, pp.
1
23
.10.1016/j.jsv.2016.10.044
15.
Luo
,
Z. H.
,
1993
, “
Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results
,”
IEEE Trans. Autom. Control
,
38
, pp.
1610
1622
.10.1109/9.262031
16.
Conrad
,
F.
, and
Morgül
,
O.
,
1998
, “
On the Stabilization of a Flexible Beam With a Tip Mass
,”
SIAM J. Control Optim.
,
36
(
6
), pp.
1962
1986
.10.1137/S0363012996302366
17.
Sakawa
,
Y.
,
Matsuno
,
F.
, and
Fukushima
,
S.
,
1985
, “
Modeling and Feedback Control of a Flexible Arm
,”
J. Rob. Syst.
,
2
(
4
), pp.
453
472
.10.1002/rob.4620020409
18.
He
,
W.
,
He
,
X.
,
Zou
,
M.
, and
Li
,
H.
,
2019
, “
PDE Model-Based Boundary Control Design for a Flexible Robotic Manipulator With Input Backlash
,”
IEEE Trans. Control Syst. Technol.
,
27
(
2
), pp.
790
797
.10.1109/TCST.2017.2780055
19.
Morita
,
Y.
,
Kobayashi
,
Y.
,
Kando
,
H.
,
Matsuno
,
F.
,
Kanzawa
,
T.
, and
Ukai
,
H.
,
2001
, “
Robust Force Control of a Flexible Arm With a Nonsymmetric Rigid Tip Body
,”
J. Rob. Syst.
,
18
(
5
), pp.
221
235
.10.1002/rob.1018
20.
Luo
,
Z. H.
, and
Guo
,
B. Z.
,
1997
, “
Shear Force Feedback Control of a Single Link Flexible Robot With Revolute Joint
,”
IEEE Trans. Autom. Control
,
42
, pp.
53
65
.10.1109/9.553687
21.
Morgül
,
O.
,
1991
, “
Orientation and Stabilization of a Flexible Beam Attached to a Rigid Body: Planar Motion
,”
IEEE Trans. Autom. Control
,
36
, pp.
953
962
.10.1109/9.133188
22.
De Luca
,
A.
, and
Siciliano
,
B.
,
1993
, “
Inversion-Based Nonlinear Control of Robot Arms With Flexible Links
,”
J. Guid., Control, Dyn.
,
16
(
6
), pp.
1169
1176
.10.2514/3.21142
23.
Tso
,
K.
,
Yang
,
T. W.
,
Xu
,
W. L.
, and
Sun
,
Z. Q.
,
2003
, “
Vibration Control for a Flexible-Link Robot Arm With Deflection Feedback
,”
Int. J. Non-Linear Mech.
,
38
(
1
), pp.
51
62
.10.1016/S0020-7462(01)00040-3
24.
Matsuno
,
F.
, and
Kasai
,
S.
,
1998
, “
Modeling and Robust Force Control of Constrained One-Link Flexible Arms
,”
J. Rob. Syst.
,
15
(
8
), pp.
447
464
.10.1002/(SICI)1097-4563(199808)15:8<447::AID-ROB2>3.0.CO;2-L
25.
Endo
,
T.
,
Matsuno
,
F.
, and
Kawasaki
,
H.
,
2014
, “
Force Control and Exponential Stabilisation of One-Link Flexible Arm
,”
Int. J. Control
,
87
(
9
), pp.
1794
1807
.10.1080/00207179.2014.889854
26.
Endo
,
T.
,
Sasaki
,
M.
,
Matsuno
,
F.
, and
Jia
,
Y.
,
2017
, “
Contact-Force Control of a Flexible Timoshenko Arm in Rigid/Soft Environment
,”
IEEE Trans. Autom. Control
,
62
(
5
), pp.
2546
2553
.10.1109/TAC.2016.2599434
27.
Endo
,
T.
,
Sasaki
,
M.
, and
Matsuno
,
F.
,
2017
, “
Contact-Force Control of a Flexible Timoshenko Arm
,”
IEEE Trans. Autom. Control
,
62
(
2
), pp.
1004
1009
.10.1109/TAC.2016.2569432
28.
Endo
,
T.
,
Matsuno
,
F.
, and
Jia
,
Y.
,
2017
, “
Boundary Cooperative Control by Flexible Timoshenko Arms
,”
Automatica
,
81
, pp.
377
389
.10.1016/j.automatica.2017.04.017
29.
Tavasoli
,
A.
, and
Mohammadpour
,
O.
,
2018
, “
Dynamic Modeling and Adaptive Robust Boundary Control of a Flexible Robotic Arm With 2-Dimensional Rigid Body Rotation
,”
Int. J. Adapt. Control Signal Process.
,
32
(
6
), pp.
891
907
.10.1002/acs.2874
30.
Zhang
,
S.
, and
Huang
,
D.
,
2017
, “
End-Point Regulation and Vibration Suppression of a Flexible Robotic Manipulator
,”
Asian J. Control
,
19
(
1
), pp.
245
254
.10.1002/asjc.1358
31.
Zuyev
,
A. L.
,
2015
,
Partial Stabilization and Control of Distributed Parameter Systems With Elastic Elements
,
Springer International Publishing
, New York.
32.
Cavallo
,
A.
,
de Maria
,
G.
, and
Pirozzi
,
C. N. S.
,
2010
,
Active Control of Flexible Structures
,
Springer
,
London
.
33.
Meurer
,
T.
,
Thull
,
D.
, and
Kugi
,
A.
,
2008
, “
Flatness-Based Tracking Control of a Piezoactuated Euler-Bernoulli Beam With Non-Collocated Output Feedback: Theory and Experiments
,”
Int. J. Control
,
81
(
3
), pp.
475
493
.10.1080/00207170701579429
34.
Jin
,
F. F.
, and
Guo
,
B. Z.
,
2015
, “
Lyapunov Approach to Output Feedback Stabilization for the Euler-Bernoulli Beam Equation With Boundary Input Disturbance
,”
Automatica
,
52
, pp.
95
102
.10.1016/j.automatica.2014.10.123
35.
Do
,
K. D.
,
2017
, “
Stochastic Boundary Control Design for Extensible Marine Risers in Three Dimensional Space
,”
Automatica
,
77
, pp.
184
197
.10.1016/j.automatica.2016.11.032
36.
He
,
W.
,
Nie
,
S.
,
Meng
,
T.
, and
Liu
,
Y.-J.
,
2017
, “
Modeling and Vibration Control for a Moving Beam With Application in a Drilling Riser
,”
IEEE Trans. Control Syst. Technol.
,
25
(
3
), pp.
1036
1043
.10.1109/TCST.2016.2577001
37.
He
,
W.
,
Meng
,
T.
,
Huang
,
D.
, and
Li
,
X.
,
2018
, “
Adaptive Boundary Iterative Learning Control for an Euler-Bernoulli Beam System With Input Constraint
,”
IEEE Trans. Neural Networks Learn. Syst., Press
,
29
(
5
), pp.
1539
1549
.10.1109/TNNLS.2017.2673865
38.
He
,
W.
,
Meng
,
T.
,
He
,
X.
, and
Ge
,
S. S.
,
2018
, “
Unified Iterative Learning Control for Flexible Structures With Input Constraints
,”
Automatica
,
96
, pp.
326
336
.10.1016/j.automatica.2018.06.051
39.
Do
,
K. D.
, and
Lucey
,
A. D.
,
2017
, “
Boundary Stabilization of Extensible and Unshearable Marine Risers With Large in-Plane Deflection
,”
Automatica
,
77
, pp.
279
292
.10.1016/j.automatica.2016.11.044
40.
Do
,
K. D.
, and
Lucey
,
A. D.
,
2018
, “
Stochastic Stabilization of Slender Beams in Space: Modeling and Boundary Control
,”
Automatica
,
91
, pp.
279
293
.10.1016/j.automatica.2018.01.017
41.
Queiroz
,
M. S. D.
,
Dawson
,
M.
,
Nagarkatti
,
S.
, and
Zhang
,
F.
,
2000
,
Lyapunov-Based Control of Mechanical Systems
,
Birkhauser
,
Boston, MA
.
42.
Kim
,
J. U.
, and
Renardy
,
Y.
,
1987
, “
Boundary Control of the Timoshenko Beam
,”
SIAM J. Control Optim.
,
25
(
6
), pp.
1417
1429
.10.1137/0325078
43.
Morgul
,
O.
,
1992
, “
Dynamic Boundary Control of the Timoshenko Beam
,”
Automatica
,
28
, pp.
1255
1260
.10.1016/0005-1098(92)90070-V
44.
Mei
,
C.
,
2009
, “
Hybrid Wave/Mode Active Control of Bending Vibrations in Beams Based on the Advanced Timoshenko Theory
,”
J. Sound. Vib.
,
322
(
1–2
), pp.
29
38
.10.1016/j.jsv.2008.11.003
45.
Xu
,
G.
, and
Wang
,
H.
,
2013
, “
Stabilisation of Timoshenko Beam System With Delay in the Boundary Control
,”
Int. J. Control
,
86
(
6
), pp.
1165
1178
.10.1080/00207179.2013.787494
46.
He
,
W.
,
Meng
,
T.
,
Liu
,
J. K.
, and
Qin
,
H.
,
2015
, “
Boundary Control of a Timoshenko Beam System With Input Dead-Zone
,”
Int. J. Control
,
88
(
6
), pp.
1257
1270
.10.1080/00207179.2014.1003098
47.
Liu
,
C.
,
Ge
,
S. S.
,
He
,
W.
, and
Zhang
,
S.
,
2014
, “
Adaptive Boundary Control for a Class of Inhomogeneous Timoshenko Beam Equations With Constraints
,”
IET Control Theory Appl.
,
8
(
14
), pp.
1285
1292
.10.1049/iet-cta.2013.0601
48.
Do, K. D.
,
2018
, “
Stabilization of Exact Nonlinear Timoshenko Beams in Space by Boundary Feedback
,”
J. Sound Vib.
,
422
, pp.
278
299
.10.1016/j.jsv.2018.02.005
49.
Krstíc
,
M.
,
Siranosian
,
A. A.
, and
Smyshlyaev
,
A. A.
,
2006
, “
Backstepping Boundary Controllers and Observers for the Slender Timoshenko Beam: Part i Control Design
,”
45th IEEE Conference on Decision and Control
, San Diego, CA, June 25–28, pp.
3938
3943
.10.1109/ACC.2006.1656581
50.
Krstíc
,
M.
,
Siranosian
,
A. A.
,
Smyshlyaev
,
A. A.
, and
Bement
,
M.
,
2006
, “
Backstepping Boundary Controllers and Observers for the Slender Timoshenko Beam: Part ii Stability and Simulations
,”
American Control Conference
, Minneapolis, MN, June 14–16, pp.
2412
2417
.10.1109/CDC.2006.377717
51.
Krstíc
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
52.
Krstíc
,
M.
,
1999
, “
On Global Stabilization of Burgers' Equation by Boundary Control
,”
Syst. Control Lett.
,
37
, pp.
123
141
.10.1016/S0167-6911(99)00013-4
53.
Do
,
K. D.
, and
Lucey
,
A. D.
,
2019
, “
Inverse Optimal Control of Evolution Systems and Its Application to Extensible and Shearable Slender Beams
,”
IEEE/CAA J. Autom. Sin.
,
6
(
2
), pp.
395
409
(In press).10.1109/JAS.2019.1911381
54.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
1971
,
Linear Optimal Control
,
Prentice Hall
, Englewood Cliffs,
NJ
.
55.
Hinze
,
M.
,
Pinnau
,
R.
,
Ulbrich
,
M.
, and
Ulbrich
,
S.
,
2009
,
Optimization With PDE Constraints, Volume 23 of Mathematical Modeling: Theory and Applications
,
Springer
,
New York
.
56.
Lions
,
J. L.
,
1971
,
Optimal Control of Systems Governed by Partial Differential Equations
,
Springer-Verlag
,
New York
.
57.
Barbu
,
V.
,
Barron
,
E. N.
, and
Jensen
,
R.
,
1988
, “
The Necessary Conditions for Optimal Control in Hilbert Spaces
,”
J. Math. Anal. Appl.
,
133
(
1
), pp.
151
162
.10.1016/0022-247X(88)90372-1
58.
Tröltzsch
,
F.
,
2010
,
Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Volume 112 of Graduate Studies in Mathematics
,
American Mathematical Society
, Providence, RI.
59.
Lasiecka
,
I.
,
2002
,
Mathematical Control Theory of Coupled PDEs
,
Siam
,
Philadelphia, PA
.
60.
Sepulchre
,
R.
,
Jankovic
,
M.
, and
Kokotovíc
,
P.
,
1997
,
Constructive Nonlinear Control
,
Springer
,
New York
.
61.
Krstíc
,
M.
, and
Deng
,
H.
,
1998
,
Stabilization of Nonlinear Uncertain Systems
,
Springer
,
London
.
62.
Krstíc
,
M.
, and
Li
,
Z. H.
,
1998
, “
Inverse Optimal Design of Input-to-State Stabilizing Nonlinear Controllers
,”
IEEE Trans. Autom. Control
,
43
(
3
), pp.
336
350
.10.1109/9.661589
63.
Nguyen
,
T. D.
, and
Egeland
,
O.
,
2008
, “
Infinite Dimensional Observer for a Flexible Robot Arm With a Tip Load
,”
Asian J. Control
,
10
(
4
), pp.
456
461
.10.1002/asjc.45
64.
Do
,
K. D.
, and
Pan
,
J.
,
2008
, “
Boundary Control of Transverse Motion of Marine Risers With Actuator Dynamics
,”
J. Sound Vib.
,
318
(
4–5
), pp.
768
791
.10.1016/j.jsv.2008.05.009
65.
Hardy
,
G.
,
Littlewood
,
J. E.
, and
Polya
,
G.
,
1989
,
Inequalities
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
66.
Gawarecki
,
L.
, and
Mandrekar
,
V.
,
2011
,
Stochastic Differential Equations in Infinite Dimensions With Applications to Stochastic Partial Differential Equations
,
Springer
,
Berlin
.
67.
Adams
,
R. A.
, and
Fournier
,
J. J. F.
,
2003
,
Sobolev Spaces
, 2nd ed,
Academic Press
,
Oxford, UK
.
68.
Do
,
K. D.
,
2016
, “
Stability of Nonlinear Stochastic Distributed Parameter Systems and Its Applications
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
10
), p.
101010
.10.1115/1.4033946
You do not currently have access to this content.